期刊文献+

甲烷/氧气在微细直管内的燃烧和散热研究 被引量:3

Investigation on Methane/Oxygen Combustion and Heat Loss in Micro-Tube
下载PDF
导出
摘要 为了解微细直管燃烧器的工作特点,采用内径2 mm和1.4 mm的微细不锈钢管和陶瓷管进行氧气和甲烷气体的燃烧实验,研究了氧气和甲烷在微细管内的燃烧特点以及微细管的散热损失.研究结果表明,当量比小于1时,由于CH4没有完全被氧化,生成了大量的H2和CO气体,减小了燃烧反应的放热量.当量比等于1时,CH4被完全氧化为CO2和水蒸气,此时的放热量最大,同时管壁的散热量也最大.不锈钢管的散热量最大,是发热量的22%,陶瓷管的散热量最大达到了16%.不锈钢管的壁面发射率较大,辐射损失所占的比例较大,最大达到总散热量的70%.由于陶瓷管的导热系数比不锈钢管小,沿轴线方向的壁面温度梯度比不锈钢管大,这样不利于轴向的传热,以及火焰的稳定. To understand working features of a micro-tube combustor, combustion of CH4/O2 was carried out in a ceramic tube with an inner diameter of 1.4 mm and a stainless steel tube with an inner diameter of 2 mm respectively. In the tests, combustion characteristics and heat loss of micro-tubes were studied. It is shown that when the equivalent ratio(ER) was less than 1, CH4 was not completely oxidized and a lot of gas H2 and CO were then produced, which lowered the combustion heat release. If ER equaled 1, CH4 was completely oxidized to gas CO2 and water vapor, and the reaction released the maximum combustion heat. Meanwhile, heat loss of the tube wall reached the highest. Heat loss of the stainless steel tube accounted for 22% of the heat release at most. Since wall emissivity of the stainless steel tube was larger than that of the ceramic tube, the radiative heat loss of the former was very large, accounting for 70% of the total heat loss at most. Additionally, because thermal conductivity of ceramic was less than that of stainless steel, temperature gradient along axis of the former was larger than that of the stainless steel tube, which was disadvantageous to axis heat transfer and flame stabilization.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2008年第3期199-204,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50376027)
关键词 微小燃烧室 甲烷 氧气 燃烧实验 热损失 micro-combustor methane oxygen combustion test heat loss
  • 相关文献

参考文献18

  • 1Carlos Femandez-Pello A. Micro-power generation using combustion : Issues and approaches [C]// Twenty-Ninth International Symposium on Combustion. Sapporo, Japan, the Combustion Institute, 2002 : 1-45.
  • 2Jacobson S A , Epstein A H. An informal survey of Power MEMS[ C ]// The International Symposium on Micro-Mechanical Engineering. Tsukuba, Japan, 2003.
  • 3黄俊,薛宏,潘剑锋,李德桃.微动力系统的若干研究动态和进展[J].世界科技研究与发展,2005,27(1):5-9. 被引量:18
  • 4Zamaschikov V V. Combustion of gases in thin-walled small diameter tubes [ J ]. Combustion Explosion and Shock Waves, 1995, 131(1) : 10-16.
  • 5Waitz I A, Gauba G, Tzeng Y S. Combustors for micro-gas turbine engines [ J]. Journal of Fluids Engineering, 1998, 120 : 109-117.
  • 6Maruta K, Park J K, OH K C, et al. Model experiments on combustion in micro-channel[C]// International Workshop on Power MEMS. Tsukuba, Japan, 2002.
  • 7Lee D H, Kwon S. Heat transfer and quenching analysis of combustion in a micro combustion vessel[J]. Journal of Micromechanics and Microengineering, 2002 ( 12 ) : 670-676.
  • 8Norton D G, Vlachos D G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures [J]. Chemical Engineering Science, 2003, 58: 4871-4882.
  • 9Norton D G, Vlachos D G. A CFD study of propane/air micro flame stability[J]. Combustion and Flame, 2004, 138: 97-107.
  • 10Spadaccini C M, Mehra A, Lee J, et al. High power density silicon combustion system for micro gas turbine engines [ J ]. Journal of Engineering for Gas Turbines and Power, 2003, 125 : 709-719.

二级参考文献47

  • 1London A. P. , Epstein A. H. , Kerrebrock J. L. High-Pressure Bipropellant Microrocket Engine. Journal of Propulsion and Power, 2001, 17(4).
  • 2Yetter R. a., Yang V., Milius D. L., Aksay I. A., Dryer f. L.Decelopment of a Liquid Propellant Microthruster for Small Spacecraft. Proc. Eastern States Section, The Combustion Institute, Hilton Head Is., S.C., Dec. 2-5,2001.
  • 3L. Sitzki, K. Borer, E. Schuster, P. Ronney. Combustion in microscale heat recalculating burners. The Third Asia-Pasfic Conference on Combustion,2001 ,Seoul,Korea.
  • 4J. Ahn, C. Eastwood, L. Sitzki, P. Ronney. Gas-phase and catalytic combhstion in heat-recirculating burners. To be published in Proceedings of the Combustion Institute, 2004, 30.
  • 5Holladay J. D., Jones E.O., Phelps M., Hu J. High-efficiency microscale power using a fuel processor and fuel cell. SPIE Micromachining & Microfabrication. Paper 4559-20, San Francisco, 2001, October, 21~24.
  • 6Epstein A. H., et al. Power MEMS and Microengines. Proc. of the IEEE Transducers '97Conference, Chicago, IL,June 1997.
  • 7Spadaccini C.M., Zhang X., Cadou C.P., Miki N., Waitz I. A.Development of a Catalytic Silicon Micro-Combustion for Hydrocarbon-Fueled Power MEMS. MEMS 2001, Jan 20-25,2002, Las Vegas NV, 2002.
  • 8Walther D. C, Pisano A.P. MEMS Rotary Engine Power System:Project Overview and Recent Research Results. Paper 335, Proc.4th Intl Symposium on MEMS and Nanotechnology, Charlotte,NC,june 2003, 227-234.
  • 9Fu K., Knobloch A. , Martinez F. , Walther D. D., FernandezPello A. C., Pisano A. P. , Liepmann D. Design and Fabrication of a Silicon-Based MEMS Rotary Engine. Paper IMECE2001/MEMS23925, Proc. ASME 2001 International Mechanical Engineering Congress and Exposition (IMECE), New York, NY,November 2001.
  • 10Yang W. MEMS Free Piston Knock Engine. Poster Presentation,28thInternational Symposium on Combustion. The Combustion Institute, Edinburgh, UK, July 30-August 4,2000. Also DARPA MEMS PI Meeting Poster, Broomfield, CO, August 29,2001.

共引文献72

同被引文献33

  • 1吴强,张保勇,王永敬.瓦斯水合物分解热力学研究[J].中国矿业大学学报,2006,35(5):658-661. 被引量:11
  • 2蒋利桥,赵黛青,汪小憨.微尺度甲烷扩散火焰及其熄灭特性[J].燃烧科学与技术,2007,13(2):183-186. 被引量:17
  • 3Wen H K. Trends and frontiers of MEMS [ J ]. Sensors and Actuators A,2007,136( 1 ) :62-67.
  • 4Choi W, Kwon S, Shin H D. Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor [ J ]. International Journal of Hydrogen Energy ,2008,33 (9) :2400-2408.
  • 5Cao H L, Xu J L. Thermal performance of a micro-eom- bustor for micro-gas turbine system [ J ]. Energy Conversion and Managenaent,2007,48 (5) : 1569-1578.
  • 6Maruta K, Kataoka T, Kim N I, et al. Characteristics of combustion in a narrow channel with a temperature gradient [ J ]. Proceedings of the Combustion Institute ,2005, 30(2) :2429-2436.
  • 7Sunderland P B, Mendelson B J, Yuan Z G, et al. Shapes of buoyant and nonbuoyant laminar jet diffusion flames [ J ]. Combustion and Flame, 1999,116 ( 3 ) : 376- 386.
  • 8Aalburg C, Diez F J, Faeth G M, et al. Shapes of nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air [ J ]. Combustion and Flame,2005,142 (1-2) :1-16.
  • 9Sunderland P B,Haylett J E,Urban D L,et al. Lengths of laminar jet diffusion flames under elevated gravity [ J ]. Combustion and Flame,2008,152(1/2) :60-68.
  • 10Matta L M, Neumeier Y,Lemon B,et al. Characteristics of microscale diffusion flame [ J ]. Proceeding of the Combustion Institute ,2002,29 ( 1 ) :933-939.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部