期刊文献+

转入甜椒热激蛋白基因CaHSP18提高番茄的耐冷性 被引量:7

CaHSP18 of Sweet Pepper Enhanced Chilling Tolerance of Transgenic Tomato Plants
下载PDF
导出
摘要 利用农杆菌介导法将甜椒热激蛋白基因转化番茄,Northern和Western杂交表明CaHSP18在番茄植株中表达,获得转CaHSP18的番茄植株。Northern杂交显示,CaHSP18基因受低温诱导,表达量随低温处理时间的延长而增加,6h时表达量最高。低温胁迫导致野生型和转基因番茄植株的相对电导率升高,光系统Ⅱ(PSII)最大光化学效率(F_v/F_m)和放氧速率下降,但转基因番茄植物维持较低的膜透性,较高的F_v/F_m和放氧速率。这些显示,在番茄植株中CaHSP18表达后耐冷性有提高。 Sweet pepper CaHSP18 was introduced into tomato by the A. tumefaciens-mediated method. Northem and Western blot showed that CaHSP18 gene was recombined into the genome of tomato in some tomato transgenic lines. Northern blot showed that the expression of CaHSP18 was induced by low temperature stress, and the highest mRNA level was observed after 6 h under chilling stress. Chilling stress caused the increase in relative electronic conductance of membrane, and the decrease in maximal fluorescence efficiency of PSII (Fv/ Fm) and oxygen evolution rate of both transgenic and wild tomato plants. However, transgenic tomato plants with expression of CaHSP18 could maintain the low relative conductance of membranes, higher Fv/Fm and oxygen evolution rate. It indicated that expression of CattSP18 enhanced the tolerance of transgentic tomato to chilling stress.
出处 《植物生理学通讯》 CSCD 北大核心 2008年第3期409-412,共4页 Plant Physiology Communications
基金 山东省自然科学基金(Y2007D50)。
关键词 甜椒细胞质小分子量热激蛋白 转基因 番茄 低温胁迫 CaHSP18 transformation tomato chilling stress
  • 相关文献

参考文献3

二级参考文献59

  • 1Buchner J (1996). Supervising the fold: functional principles of molecular chaperones. FASEB J, 10:10-19.
  • 2Carrasco R, Almoguera C, Jordano J (1997). A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducable by heat stress. J Biol Chem, 272:27470-27475.
  • 3Downs CA, Ryan SL, Heckathorn SA (1999). The chloroplast small heat-shock protein: Evidence for a general role in protecting photosystem Ⅱ against oxidation stress and photoinhibition. J Plant Physiol, 155:488-496.
  • 4Friedrich KL, Giese KC, Buan NR, Vierling E (2004).Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem, 279:1080-1089.
  • 5Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE,Chen S, Saibil HR, Bucher J (1999). Hsp26: a tempratureregulated chaperone. EMBO J, 18:6744-6751.
  • 6Heckathorn SA, Ryan SL, Baylis JA, Wang DF, Hamilton EW,Cundiff L, Dawn SL (2002). In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protest photosystem Ⅱduring heat stress. Funct Plant Biol, 29:933-944.
  • 7Horváth I, Glatz A, Varvasovski V, Torok Z, Páli T, Balogh G,Kovács E, Nádasdi L, Benko S, JoóF (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC6803: identification of hsp17 as a "fluidity gene". Proc NatlAcad Sci USA, 95:3513-3518.
  • 8Kadyrzhanova DK, Vlachonasios KE, Ververidis P, Dilley DR (1998). Molecular cloning of a novel heat induced/chilling tolerance related cDNA in tomato fruit by use of mRNA differential display. Plant Mol Biol, 36:885-898.
  • 9Lee BH, Won SH, Lee HS, Miyao M, Chung W, Kim IJ, Jo J (2000). Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 245: 283-290.
  • 10Lee GJ, Pokala N, Vierling E (1995). Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem, 270:10432-10438.

共引文献55

同被引文献113

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部