期刊文献+

不同形态低维ZnO晶须的制备及表征

Preparation and Characterization of Different Topography Low Dimensional ZnO Whiskers
下载PDF
导出
摘要 采用热蒸发法制备出高纯度线状、棒状、多脚状的不同形态ZnO晶须材料。研究了氮气流量、反应温度、反应时间(保温时间)等因素对产物规整率、转化率及长径比的影响。利用SEM对产物形态进行表征。结果表明:采用不同条件的热蒸发法可制备出高质量不同形态的ZnO晶须。反应过程中锌蒸压气对产物形态的影响较大。以陈化锌粉为原料,在1000-1100℃保温较短的时间,并始终以0.2m^3/h通入高纯氮气,得到棒状晶须;保温时间较长,得到线状晶须。而多脚状ZnO晶须则是在通入高纯氮气时间较短的情况下得到的。 The different morphologies of high-quality ZnO whisker materials have been synthesized by thermal evaporation methods, which include wires, rods, and multiple morphologies. Effect of N2 feed rate, reaction temperature and reaction time on regular ratio, percent conversion and ratio of length and diameter is researched. The morphologies of the whiskers were characterized by SEM. The result shown that high-quality different morphologies of ZnO whiskers can be synthesized by thermal evaporation method in different conditions. The fractional pressure of zinc vapor plays an important role in forming the different morphologies of whiskers. Take the aging zinc powder as source material, heat preserve at 1000-1100℃ for less than 60 min and inlet high purity nitrogen at the rate of 0.2m^3/h all the time, ZnO rods can be obtained. When the reaction time is longer, ZnO wires can be obtained. When the time of inletting high purity nitrogen is shorter, multiple morphologies can be obtained.
作者 陈尔凡 张黎
出处 《材料工程》 EI CAS CSCD 北大核心 2008年第6期1-4,共4页 Journal of Materials Engineering
基金 国家自然科学基金重点项目(59431040) 辽宁省自然科学基金资助项目(9810301003) 辽宁省教育厅科学基金(202213109) 沈阳市重点科研基金资助项目(1032040-1-03-01)
关键词 ZnO晶须 制备 不同形态 热蒸发法 ZnO whisker prepare different morphology method of thermal evaporation
  • 相关文献

参考文献10

  • 1YANG P D, YAN H Q, MAO S, et aI. ControIled growth of ZnO nanowires and their optical properties[J]. Adv Mater, 2002, 12(5) :323-331.
  • 2WANG Y W, ZHANG L D, WANG G Z, et al. Catalytic growth of semi-conductlng zinc oxide nanowires and their photolumincscence properties[J]. Crystal Growth, 2002, 234 :171- 175.
  • 3JHONSON J C, YAN H, SCHALLER R D, et al. ZnO nano ribbon microcavity lasers[J]. Adv Mater, 2003, 15(22) : 1907- 1914.
  • 4孟阿兰,蔺玉胜,王光信.ZnO纳米线的电化学制备研究[J].无机化学学报,2005,21(4):583-587. 被引量:20
  • 5胡永明,顾豪爽,陈侃松,郑凯泓.多孔阳极氧化铝模板法合成纳米线阵列的研究及应用进展[J].化工进展,2004,23(10):1072-1076. 被引量:12
  • 6贺英,王均安,桑文斌,吴若峰,颜莉莉,方云英.采用高分子自组装ZnO纳米线及其形成机理[J].化学学报,2005,63(12):1037-1041. 被引量:14
  • 7CUIJ B, DAGHLIAN C P, GIBSON U J, et al. Low-temperature growth and field emission of ZnO nanowires arrays[J]. Applied Physics, 2005, 97: 044315-044322.
  • 8WEI Hui-ying, WU You-shi, LUN Ning, et al. Hydrothermal synthesis and characterization of ZnO nanorods[J]. Materrials Science and Engineering, 2005, 393:80- 82.
  • 9陈尔凡,田雅娟,程远杰,周本廉.四脚状氧化锌晶须的生长习性及机理的研究[J].硅酸盐学报,2001,29(2):151-156. 被引量:27
  • 10WANAGA H I, FUJII M, ICHIHARA M, et al. Some evi denee of the oeta-twin of tetrapod ZnO particles [J]. Crystal Growth, 1994, 141:234-238.

二级参考文献62

  • 1[1]Nielsch K,Hertel R, Wehrspohn R B, et al.[J].IEEE Trans. Magn., 2002, 5(38): 2571~2573
  • 2[2]Nielsch K, Wehrspohn R B,Barthel J, et al.[J]. J. Magn. Magn. Mater., 2002,49:234~240
  • 3[3]Khan H R ,Petrikowski K.[J].Mater. Sci. and Eng. C,2002,19:345~348
  • 4[4]Rahman I Z, Razeeb K M, Rahman M A,et al.[J].J. Magn.Magn. Mater., 2003, 262:166~169
  • 5[5]Robert M M, Valery V K, M Sun, et al. [J].IEEE Trans. Magn.,2000,1(36): 30~35
  • 6[6]Zhang Y ,Li G H ,Wang Y C.et al. [J]. Adv. Mater.,2002,14:1227~1230
  • 7[7]Marisol M G, Amy L P, et al. [J]. Adv. Mater.,2003,15:1004~1006
  • 8[8]Mikhaylova M, Toprak M, Kim K K,et al. [J]. Mat. Res. Soc.,2002, 6:341~346
  • 9[9]Baolin W,Shuangye Y,Guanghou W,et al. [J]. Phys. Rev. Lett.,2001,86: 2046~2049
  • 10[10]Lincoln J L, Mark S G, Dell W,et al. [J]. Nature,2002,420:57~61

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部