摘要
对任意正整数n,著名的Smarandache LCM函数SL(n)定义为最小的正整数k,使得n|[1,2,…,k],其中[1,2,…,k]表示1,2,…,k的最小公倍数.本文利用初等方法研究一类包含Smarandache LCM函数方程的可解性,并获得了给定方程的所有正整数解.
For any positive integer n, the famous Smarandache LCM function SL(n) is defined as the smallest positive integer k such that n | [1, 2,..., k], where [1, 2,..., k] denotes the least common multiple of 1, 2,..., k. The main purpose of this paper is to use t'he elementary methods to study the solutions of an equation involving the Smarandache LCM function SL(n), and obtain all positive solutions of this equation.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第4期779-786,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10671155)