期刊文献+

氧杂质致Ti-Si-N薄膜高硬度损失的机理 被引量:7

The hardess degradation of Ti-Si-N coatings induced by oxygen impurity and its mechanisms
下载PDF
导出
摘要 基于纳米复合Ti-Si-N薄膜硬度对界面相微结构及微尺度变化极为敏感的实验事实,定量表征了薄膜的硬度与氧杂质含量的关系.结果表明,与高纯度薄膜40-55 GPa高硬度比较,1%-1.5%的氧杂质含量导致薄膜的硬度下降到30 GPa左右.根据纳米晶界面原子模型和实验结果,氧杂质与纳米尺度界面交互作用所引发的微尺度缺陷是硬度下降的诱因,晶界面的氧杂质密度是薄膜高硬度损失程度的决定因素,单个纳米晶周围的氧杂质覆盖度达到10个原子以上时,薄膜的硬度只能达到30 GPa. It was observed that the limitation hardness of nanocomposite Ti-Si-N coatings was very sensitive to microstructure of interface. It is shown that a dependent relation between hardness of Ti-Si-N coatings and oxygen impurity content of coatings. The 1%-1.5% of oxygen content in coatings causes a hardness decrease to about 30 GPa, as compared to 45-55 GPa for the relatively pure material. Based on an atomic model analysis, the decreasing of hardness caused by a small amount of oxygen impurities can be explained by oxygen atoms induce weakening of the Si3N4 interface which acts as a "glue" between the TiN nanocrystals. Further, It is concluded that density of oxygen atoms around grain boundary is a dominant factor on hardness degradation of the films, and the superhardness of above 40 GPa can not be achieved in coatings with above 10-oxygen atoms coverage around one TiN crystal.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2008年第3期287-290,共4页 Chinese Journal of Materials Research
基金 国家973重大基础研究项目2004CB619300 国家自然科学基金项目50601020和50671079 西安应用材料创新基金项目XMAM-200617 西安市科技攻关项目GG06057资助项目~~
关键词 材料科学基础学科 纳米复合薄膜 硬度 氧杂质 foundational discipline in materials science, nanocomposite coating, hardness, oxygen impurity
  • 相关文献

参考文献14

  • 1马大衍,马胜利,徐可为,S.Veprek.纳米Ti-Si-N薄膜的高温热稳定性[J].材料研究学报,2004,18(6):617-622. 被引量:7
  • 2S.Veprek, P.Nesladek, A.Niederhofer, Search for superhard materials: nanocrystalline composites with hardness exceeding 50 GPa, Nanostructured Materials, 10(5), 679(1998).
  • 3J.Haines, J.M.Leger, G.Bocquillon, Synthesis and design of superhard materials, Annu. Rey. Mater. Res., 31(1), 25(2001).
  • 4Wang Y.M., Chen M.W., Zhou F.H., Ma E., High tensile ductility in a nanostructured metal, Nature, 419, 912(2002).
  • 5S.Li, Y,Shi, H.Peng, Ti-Si-N films prepared by plasmaenhanced chemical vapour deposition, Plasma Chemistry and Plasma Processing, 12(3), 287(1992).
  • 6J.Patscheider, Nanocomposite hard coatings for wear protection, MRS Bull., 28(3), 180(2003).
  • 7Fanghua MEI, Nan SHAO, Xiaoping HU, Geyang LI, Mingyuan GU, Microstructure and mechanical properties of reactively sputtered Ti-Si-N nanocomposite films, Materials Letters, 59, 2442(2005).
  • 8W.J.Meng, X.D.Zhang, B.Shi, R.C.Tittsworth, L.E.Rehn, P.M.Baldo, Microstructure and mechanical properties of Ti-Si-N coatings, J. Mater. Res., 17, 2628(2002).
  • 9S.H.Kim, J.K.Kim, K.H.Kim, Influence of deposition conditions on the microstructure and mechanical properties of Ti-Si-N films by DC reactive magnetron sputtering, Thin Solid Films, 420-421, 360(2002).
  • 10P.Vaz, L.Rebouta, Ph.Godeau, T.Girardeau, J.Pacaud, J.P.Riviere, A. Traverse, Structural transitions in hard Sibased TiN coatings: the effect of bias voltage and temperature, Surf. Coat. Technol., 146-147, 274(2001).

二级参考文献10

  • 1C.Leyens, M.Peters, P. Eh. Hovsepian, D.B.Lewis, Q.Luo, W.-D. Munz, Surf. Coat. Technol., 155, 103(2002)
  • 2R.Suchentrunk, G.Staudigl, D.Jonke, H.J.Fuesser, Surf. Coat. Technol., 97, 1(1997)
  • 3S.Veprek, A.Arogn, J. Vac. Sci. Technol., B20, 650(2002)
  • 4B.Selbach, K.Schmidt, M.Wang, Thin Solid Films, 188, 267(1990)
  • 5S.Veprek, S.Reiprich, Li Shizhi, Appl. Phys. Lett., 66, 2640(1995)
  • 6D.Heim, R.Hochreiter, Surf. Coat. Technol., 98, 1553(1998)
  • 7S.Veprek, S.Reiprich, Thin Solid Films, 268, 64(1995)
  • 8S.Veprek, A.Niederhofer, K.Moto, T.Bolom, H.-D.Mannling, P. Nesladek, G.Dollinger, A.Bergmaier, Surf.Coat. Technol., 133-134, 152(2000)
  • 9W.C.Oliver, G.M.Pharr, J.Mater. Res., 7, 1564(1992)
  • 10S.Sambasivan, W.T.Petuskey, J. Mater. Res., 9, 2362(1994)

共引文献6

同被引文献45

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部