期刊文献+

频率响应位移幅值敏度分析的伴随法 被引量:7

Sensitivity Analysis for Frequency Response Amplitude with Adjoint Method
下载PDF
导出
摘要 频率响应位移幅值的敏度分析通常采用直接法,一次敏度分析只能计算出对一个设计变量的偏导数,这在设计变量很多的拓扑优化中因敏度分析计算量太大而显得不适用,本文推导了频率响应位移幅值敏度分析的伴随法,一次敏度分析可计算出对所有设计变量的偏导数,算例表明伴随法计算结果与直接法及差分法结果符合得很好,用伴随法分析敏度在结构拓扑优化中可以大幅提高计算效率。 The direct method is always adopted to analyze sensitivity of displacement amplitude with frequency response, the partial derivatives with respect to a single design variable can be obtained from a sensitivity analysis, thus it is not suitable for the topology optimization with many design variables. An adjoint method for sensitivity analysis of displacement amplitude with frequency response is developed and the partial derivatives with respect to all design variables can be obtained via a sensitivity analysis. The numerical examples reveal that the results from the adjoint method agree with those from direct method and difference method very well with a lighter computing task.
出处 《应用力学学报》 EI CAS CSCD 北大核心 2008年第2期247-252,357,共6页 Chinese Journal of Applied Mechanics
基金 北京市自然科学基金(3042002) 北京市教委基金(KM200410005019)
关键词 频率响应 敏度分析 伴随法 拓扑优化 frequency response, sensitivity analysis, adjoint method, topology optimization
  • 相关文献

参考文献12

  • 1Gradhi R. Structural optimization with frequency constraints-a review[J]. AIAA J. 1993,31(12): 2296-2303.
  • 2Ma Z D, Kikuchi N, Hagiwara I. Structural topology and shape optimization for a frequency response problem[J]. Computational Mechanics, 1993,13(3) : 157-174.
  • 3Haftka R T, Adelman H M. Recent developments in structural sensitivity analysis[J]. Structural optimization, 1989, 1: 137-151.
  • 4Nalecz A G, Wicker J. Design sensitivity analysis of mechanical system in frequency domain[J]. Journal of Sound and Vibration, 1988, 120(2): 517-526.
  • 5Ting T, Chen T L C, Twomey W J. Finite element model refinement with actual forced response of structures[J]. Finite Elements in Analysis and Design, 1992, 11(3): 213-220.
  • 6Livne E, Blando G D. Structural dynamic frequency response using combined direct and adjoint reduced-order approximations[J]. AIAA Journal, 2003, 41(7): 1377-1385.
  • 7董绍强,廖道训,陆永忠.结构频率响应灵敏度计算及响应修改研究[J].华中科技大学学报(自然科学版),2001,29(10):56-58. 被引量:2
  • 8Sadek E A. Minimum Weight Design of Structures under Frequency and Frequency Response Constraints[J]. Computers & Structures, 1996, 60(1): 73-77.
  • 9戴君,韩利凯.结构动力响应可靠性优化设计中的灵敏度分析[J].机械科学与技术,2002,21(5):736-737. 被引量:5
  • 10Qu Z Q. Accurate methods for frequency responses and their sensitivities of proportionally damped systems[J]. Computers and Structures, 2001, 79(1): 87-96.

二级参考文献28

  • 1程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:86
  • 2隋允康,彭细荣.连续体结构考虑离散性目标的ICM方法[J].计算力学学报,2006,23(2):163-168. 被引量:11
  • 3刘小平,彭嘉雄,丁明跃,林宗坚.非线性结构动力响应中的灵敏度分析[J].华中理工大学学报,1996,24(9):71-74. 被引量:2
  • 4林家浩.结构动力优化中灵敏度分析[J].振动与冲击,1985,4(1):1-6.
  • 5陈建军.机械与结构系统的可靠性[M].西安电子科技大学,1995..
  • 6Ting T,Finite Element Model Refinement with Actual Forced Responseof Structures Finite Element in Analysis,1992年,11期,213页
  • 7Yu Chenting,Computers Structures,1990年,36卷,6期,1013页
  • 8BENDSOE M P,KIKUCHI N.Generating optimal topologies in structural design using a homogenizationmethod[J].Computer Methods in Applied Mechanics and Engineering,1998,71(1):197-224.
  • 9YANG R J.Topology optimization analysis withmultiple constraints[J].American Society of Mechanical Engineers,Design Engineering Division,1995,82(1):393-398.
  • 10XIE Y M,STEVEN G P.Simple evolutionary proce-dure for structural optimization[J].Computers and Structures,1993,49(5):885-896.

共引文献30

同被引文献69

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部