期刊文献+

高阶传统型差分格式在Level Set方法中的应用 被引量:1

Numerical Study of High Order Traditional Scheme in Level Set Method
下载PDF
导出
摘要 随着界面追踪方法的发展,各种高分辨率、高精度的差分格式得到了广泛的应用。在实际计算中,有时人们只追求差分格式的形式,采用流行的差分格式,忽略了高阶传统型差分格式不仅构造简单,而且具有良好的分辨率。用5阶迎风偏斜格式、积分平均型TVD格式和5阶WENO格式求解Level Set方程,通过求解典型的界面追踪数值算例,发现用5阶迎风偏斜差分格式求解Level Set方程不仅构造简单而且计算结果具有很高的精度。 Along with the development of method for tracing interface, high order and high resolution scheme were used widely. In actual computation, people pay attention to the scheme shape, and use the popular scheme sometimes, and ignore the high order traditional scheme which has simple structure and high resolution. In this paper, the Level Set equation is solved with 5th order upwind deflective scheme, TVD integrate average method and 5th WENO scheme, and by solving the classical examples of tracing interface, the author found that solving Level Set equation with 5th order upwind deflective scheme has simple structure and highly accurate results.
作者 李栋
出处 《江苏工业学院学报》 2008年第2期59-62,共4页 Journal of Jiangsu Polytechnic University
关键词 迎风格式 WENO格式 LEVEL Set方程 upwind scheme WENO scheme Level Set equation
  • 相关文献

参考文献3

  • 1谷汉斌,李炎保,李绍武,张庆河.界面追踪的Level Set和Particle Level Set方法[J].水动力学研究与进展(A辑),2005,20(2):152-160. 被引量:17
  • 2Chang Y C, Hou T Y, Merriman B. A level set formulation of eulerian interface capturing methods for incompressible fluid flows [J]. Journal of computational Physics, 1996, 124 (2) : 449--464.
  • 3Jin Shi, Changqing Hu, Chiwang Shu. A technique of treating negative weights in WENO schemes [J]. Journal of ComputationalPhysics, 2002, 175 (1): 108--127.

二级参考文献15

  • 1王永学.无反射造波数值波浪水槽[J].水动力学研究与进展(A辑),1994,9(2):205-214. 被引量:60
  • 2马福喜,牛文臣,孙东坡.三维水流河床变形数学模型[J].水动力学研究与进展(A辑),1996,11(3):241-250. 被引量:4
  • 3ENRIGHT D. FEDKIW R. FERZIGER J. et al. A hybrid Particle Level Set method for improved interface capturing[J]. Journal of Computational Physics,2002. 183: 83-116.
  • 4SHI Jing, ZHANG Yong-tao, SHU Chi-wang. Resolution of high order WENP schemes for complicated flow structures[J]. Journal of Computational Physics,2003, 186: 690-696.
  • 5SALMAN N, LIU Chong-qing. Active contours and mumford-shah segmentation based on Level Sets[J].Journal of Shanghai Jiaotong University. 2003. (1):48-53.
  • 6OSHER S,SETHAIN J A.Fronts propagating with curvature dependent speed: algorithms based on Hamil ton Jacohi formulations[J]. J. Comp. Phys., 1988, 79,12-49.
  • 7LIN P, LIU P L-F. Free Surface Tracking Methods and Their Applications to Wave Hydrodynamics[A].Philip L-F. Liu. Advances in Coastal and Ocean Engineering[M]. Volume 5. Singapore NewJersey London HongKong. World Scientific. 1999. 213-240.
  • 8LIN Peng-zhi, LIU P L-F. A numerical study of breaking waves in the surf zonep[J]. J. Fluid Mech. ,1998, 359: 239-264.
  • 9Berthelsen PA. A Short Introduction to the level Set Method and Incompressible Two-Phase Flow, A Computational Approach[R]. Department of Applied Mechanics, Thermodynamics and Fluid Dynamics Norwegian University of Science and Technology. 2002.
  • 10LIU P L-F. LIN Peng-zhi, CHANG Kuang-an et al.Numerical model of wave interaction with porous structures[J]. Journal of Waterway, Port, Coastal,and Ocean Engineering, 1999, ( Nov./Dec. ): 322-3.30.

共引文献16

同被引文献21

  • 1计时鸣,张生昌,张宪,等.基于流场约束型液动磨粒流的表面光整加工方法:中国,10067628.3[P].2007-03-21.
  • 2SHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamil- ton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12-49.
  • 3BURGER M. A framework for the construction of level set methods for shape optimization and reconstruction[J]. Interfaces and Free Boundaries, 2003, 5:301 - 329.
  • 4WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Com- puter Methods in Applied Mechanics and Engineering, 2003, ]92(1/2): 227-246.
  • 5CHAN T F, VESE L A. Active contours without edges [J]. IEEE Trans on Image Processing, 2001, 10 (2): 266 - 277.
  • 6CASELLES V, KIMMEL R and SAPIRO G. Geodesic active contours [J]. International Journal of Computer Vision, 1997, 22(1): 61-79.
  • 7SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two- phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159.
  • 8OKA H, ISHII K. Numerical analysis on the motion of gas bubbles using level set method[J]. Journal of the Physical Society of Japan, 1999, 68(3) .. 823 - 832.
  • 9PATANKAR S V. Numerical Heat Transfer and Fluid FIow[M]. lth ed. Washing-ton D C.. Hemisphere Publishing Corporation, 1980.
  • 10XU J. A level set approach simulating topological changes of gas-liquid interface in small scale incom- pressible viscous two-phase flows[J]. Chinese Journal of Computer Physics, 1998, 15(3): 349.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部