期刊文献+

利用苹果SSR引物分析山楂属植物遗传关系 被引量:7

Assessment of genetic relationship in Crataegus genus by the apple SSR primers
下载PDF
导出
摘要 SSR引物在不同物种间具有通用性,从141对苹果属(Malus spp.)SSR引物中筛选出10对适合于山楂属(Crataegus spp.)植物的SSR引物,并对8个种37份山楂种质资源的遗传关系进行了分析。10对SSR引物共检测到91个多态性谱带,每个位点的等位基因数为3~13个,平均为9.1个。位点杂合度为0.432~0.790,平均为0.688。10对SSR引物可以将20份山楂资源区分开,17份不能区分的资源分为3组,第1组为3个伏山楂品种,第2组和第3组分别包括大果山楂的2个和12个品种。基于SSR标记构建的聚类树状图将供试37份山楂资源分成2个类群,第1类群包括6个山楂野生种,第2类群包括供试的所有伏山楂、山楂和大果山楂资源。该聚类结果与传统形态学分类一致。 The transferability of SSRs information from one species to another species has been proven. In this study, we attempted to transfer 141 SSR primers derived fiom apple to hawthorn, and study the genetic relationship among 37 hawthorn germplasms, belonging to 8 species. Only 10 primer pairs which successfully amplified clear and polymorphic band patterns indicating single locus were selected for hawthorn genetic analysis. A total of 91 alleles were detected from 10 SSR loci, with an average of 9.1 alleles fiom 3 to 13. Heterozygosity for individual locus ranged from 0.432 to 0.790, with an average heterozygosity for 10 loci equaling 0.688. Twenty accessions could be differentiated from each other, seventeen accessions that could not be distinguished were divided into 3 groups: the first group included 3 genotypes of Crataegus brettschneideri; the second and the third group included 2 and 12 cultivars of C. pinnatifida var. major respectively. UPGMA cluster analysis of the 37 hawthorn accessions based on SSR markers resulted in 2 clusters which appeared to be related to traditional morphology classification. Cluster Ⅰ contains 6 wild species of hawthorn, and the accessions of C. brettschneideri, C. pinnatifida and C pinnatifida var. major grouped in cluster Ⅱ.
出处 《果树学报》 CAS CSCD 北大核心 2008年第4期521-525,共5页 Journal of Fruit Science
基金 辽宁省高等学校创新团队支持计划(2007T161)
关键词 山楂 苹果SSR引物 遗传关系 Hawthorn Apple SSR primer Genetic relationships
  • 相关文献

参考文献20

  • 1RIGELSKY J M, SWEET B V. Hawthorn: Pharmacology and therapeutic uses[J]. American Journal of Health-System Pharmacy, 2002, 59(5): 417-422.
  • 2KAO E S,WANG C J,LIN W L,YIN Y F,WANG C P,TSENG T H. Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo[J]. Journal of Agricultural and Food Chemistry, 2005, 53(2): 430-436.
  • 3GUIFORD P, PRAKASH S,ZHU J M,RIKKERINK E, GARDINER S, BASSETT H, FORSTER R. Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification [J]. Theoretical and Applied Genetics, 1997, 94(2): 249-254.
  • 4HOKANSON S C,SZEWC-MCFADDEN A K,LAMBOY W F, MCFERSON J R. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset colleetion[J]. Theoretical and Applied Geneties, 1998, 97(5-6): 671-683.
  • 5LIEBHARD R,GIANFRANCESCHI L,KOLLER B,RYDER C D, TARCHINI R,VAN DE WEG E,GESSLER C. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.)[J]. Molecular Breeding, 2002, 10(4): 217-241.
  • 6CIPRIANI G,LOT G,HUANG W G,MARRAZZO M T,PETERLUNGER E ,TESTOLIN R. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus[J]. Theoretical and Applied Cenetics, 1999, 99(1-2): 65-72.
  • 7SOSINSKI B, GANNAVARAPU M, HAGER L D, BECK E, KING G J,RYDER C D,RAJAPAKSE S,BAIRD W V, BALLARD R E,ABBOTT A G. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch][J]. Theoretical and Applied Genetics, 2000,101 (3): 421-428.
  • 8ARANZANA M J,CARBO J,ARUS P. Microsatellite variability in peach [Prunus persica (L.) Batsch]: cuhivar identification, marker mutation, pedigree inferences and population structure[J]. Theoretical and Applied Genetics, 2003, 106(8): 1341-1352.
  • 9DI GASPERO G, CIPRIANI G, MARRAZZO M T,ANDREETTA D, CASTRO M J P,PETERLUNGER E,TESTOLIN R. Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection[J]. Molecular Breeding, 2005, 15(1 ): 11-20.
  • 10DI GASPERO G, PETERLUNGER E, TESTOLIN R, EDWARDS K J, CIPRIANI G. Conservation of microsatellite loci within the genus Vitis[J]. Theoretical and Applied Genetics, 2000, 101 (1-2): 301- 308.

二级参考文献24

  • 1刘海河,侯喜林,张彦萍.西瓜ISSR-PCR体系的正交优化研究[J].果树学报,2004,21(6):615-617. 被引量:32
  • 2肖敏,张志宏,代红艳,杨洪一,李贺.PCR检测草莓镶脉病毒的稳定性研究[J].果树学报,2005,22(5):483-487. 被引量:34
  • 3高丽,杨波.春兰ISSR-PCR反应体系的优化[J].华中农业大学学报,2006,25(3):305-309. 被引量:23
  • 4冯夏莲,何承忠,张志毅,安新民,杨凯,张有慧.毛白杨ISSR反应体系的建立及优化[J].北京林业大学学报,2006,28(3):61-65. 被引量:25
  • 5宣朴,邓婧,陈新,尹春蓉,陈放.苦瓜ISSR扩增条件优化的研究[J].核农学报,2006,20(3):215-217. 被引量:14
  • 6Frazier NW. Detection of graft-transmissible diseases in strawberry by a modified leaf grafting technique[J]. Plant Disease Reporter.1974, 58:203-207.
  • 7Petrzik K, Benes V, Mráz I. Strawberry vein banding virus-Definitive member of the genus Caulimovirus [J]. Virus Genes. 1998,16(3):303-305.
  • 8Mráz I, Petrzik K, Fránová-Honetálegrová J, et al. Detection of strawberry vein banding virus by polymerase chain reaction and dot blot hybridization[J]. Acta Virologica, 1997, 41(4):241-242.
  • 9Mráz I, Honetslegrová J, Sip M. Diagnosis of strawberry vein band ing virus by a nonradioactive probe[J]. Acta Virologica, 1996, 40:139-141.
  • 10Thompson JR, Wetzel S, Klerks MM, et al. Multiplex RT-PCR detection of four aphid-borne strawberry viruses in Fragaria spp.in combination with a plant mRNA specific internal control[J]. Journal of Virological Met hods, 2003, 111:85-93.

共引文献67

同被引文献127

引证文献7

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部