期刊文献+

神经网络在计算系统软件抗衰重启技术中的应用研究 被引量:5

Research on the Application of Artificial Neural Network in the Fine-Grained Software Rejuvenation of Computing System
下载PDF
导出
摘要 将神经网络应用于计算系统的抗衰重启技术中,以实现细粒度的软件抗衰,可以更大程度地增强软件抗衰的智能化,提高抗衰效率及准确性,进一步降低抗衰开销,提高软件可靠性.判定模块重启相关性及模块可达集是实施细粒度软件抗衰策略的关键环节.文中结合神经网络工作原理,构建了判定模块间重启相关度及模块可达集的神经网络结构模型.该模型根据软件系统中模块间的控制、调用及数据访问关系,通过分析模块间的耦合程度和重启相关性的相关理论及其之间的关系,制定模块重启相关度和模块可达集的判定算法,最终完成系统模块间重启相关度及模块可达集的判定任务,从而为实现智能化细粒度软件抗衰提供支持. In order to improve the software availability and reliability, intelligentize the software rejuvenation and boost up its veracity and efficiency, the rejuvenation granularity would be finer and artificial neural network would be applied. The key step of fine-grained software rejuvenation is to determine restart dependence between the modules. This paper researches the principium of artificial neural network, puts forward the model of artificial neural network which determines the degree of restart dependence between modules and reachable set of each module finally. Based on the coupling relation between modules of software system, this model analyzes the connection between restart dependence and coupling relation, sets down the arithmetic to calculate the degree of restart dependence between modules and reachable set of each module; so that the intelligent software rejuvenation with fine rejuvenation granularity is supported.
出处 《计算机学报》 EI CSCD 北大核心 2008年第7期1268-1275,共8页 Chinese Journal of Computers
基金 国家自然科学基金项目(60273035)资助
关键词 软件抗衰 抗衰粒度 重启相关度 神经网络 software rejuvenation rejuvenation granularity degree of restart dependence artificial neural network
  • 相关文献

参考文献9

  • 1Garg S, van Moorsel A, Vaidyanathan K, et al. A methodology for detection and estimation of software aging//Proceedings of the 9th International Symposium on Software Reliability Engineering. Los Alamitos, CA, USA, 1998: 283- 292.
  • 2Castelli V, Harper R E, Heidelberger P. Proactive management of software aging. IBM JRD, 2001, 45(2): 311-332.
  • 3Hong Y, Chen D, Li L et al. Closed loop design for software rejuvenation//Proceedings of the Workshop on Self-Healing,Adaptive and Self-Managed Systems. New York, USA,2002.
  • 4Patterson D, Brown A, Broadwell P. Recovery oriented computing (ROC): Motivation, definition, techniques, and case studies. UC Berkeley: Computer Science Technical Report UCB/CSD-02-1175, 2002.
  • 5Candea G, Cutler J, Fox A. Improving availability with recursive microreboots: A soft-state system case study. Performance Evaluation Journal, 2004, 56(1-3): 213-248.
  • 6IBM servers, http://www-03. ibm. com/servers/Systems under Varying Workload/Proceedings of the 10th International Pacific Rim Dependable Computing Symposium (PRDC 2004). Papeete, Tahiti, 2004:122-129.
  • 7You Jing, Xu Jian, Zhao Xue-long, Liu Feng-Yu. Modeling and cost analysis of nested software rejuvenation policy// LNCS 3612. Springer-Verlag, 2005:1280-1289.
  • 8You Jing, Xu Jian, Zhao Rue-long, Liu Feng-Yu. Modeling and availability analysis of nested software rejuvenation policy//Proceedings of IEEE SMC, 2005:34-38.
  • 9周井泉,张顺颐.基于独立变量的神经网络的最短路径计算[J].电路与系统学报,2005,10(4):61-65. 被引量:1

二级参考文献7

  • 1Mustafa K, Ali M, Kamount F. Neural Networks for Shortest Path Computation and Routing in Computer Networks [J]. IEEE Trans. Neural Networks, 1993, 4(6): 941-953.
  • 2Wang J. A Recurrent Neural Network for Solving the Shortest Path Problem [J]. IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, 1996, 43(6): 482-486.
  • 3Carlos B C, Anibal F V. A Bank of Hopfield Neural Networks for the Shortest Path Problem [J]. Signal Processing, 1997, 61 (2): 157-170.
  • 4Filip A, Bernardete R, Luis R. A Neural Network for Shortest Path Computation [J]. IEEE Trans. on Neural Networks, 2001, 12(5):1067 - 1073.
  • 5Chua L O, Desor C A, Kuh E S. Linear and Nonlinear Circuits [M]. McGraw-Hall Inc, 1987.
  • 6Hopfield J J, Tank D W. Neural Computation of Decisions in Optimization Problems [J]. Biolog. Cybern., 1985, 52(3): 141-152.
  • 7Tank D W, Hopfield J J. Simple "Neural" Optimization Networks: An A/D Convert, Signal Decision Circuit, and a Linear Programming Circuit [J]. IEEE Trans Circuits and Systems, 1986, 33(5): 533-541.

同被引文献36

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部