摘要
Using the multi-configuration Dirac Fock method including the Breit interactions and QED corrections, we calculate the fine-structure energy levels of the 2^3 Po, 1,2 states along the helium isoelectronic sequence with atomic number up to Z = 36, where LS-coupling is appropriate. Our calculation results agree with the experimental results within about 1%. We elucidate the mechanism of the interesting fine-structure splittings for the 2^3Po,1,2 states along the helium isoelectronic sequence, i.e. the competitions between the spin-orbit interactions and the Breit interactions which represent the relativistic retardation effect of electromagnetic interactions.
Using the multi-configuration Dirac Fock method including the Breit interactions and QED corrections, we calculate the fine-structure energy levels of the 2^3 Po, 1,2 states along the helium isoelectronic sequence with atomic number up to Z = 36, where LS-coupling is appropriate. Our calculation results agree with the experimental results within about 1%. We elucidate the mechanism of the interesting fine-structure splittings for the 2^3Po,1,2 states along the helium isoelectronic sequence, i.e. the competitions between the spin-orbit interactions and the Breit interactions which represent the relativistic retardation effect of electromagnetic interactions.
基金
Supported by the Ministry of Science and Technology and Ministry of Education of China, the Key Project of the Ministry of Education of China (No 306020), the National Natural Science Foundation of China under Grant No 10734040, the National High-Tech ICF Committee in China, and the Yin-He Super-Computer Center, Institute of Applied Physics and Mathematics, Beijing, China, and the National Basic Research Programme of China under Grant No 2006CB921408.