期刊文献+

Extensions of McCoy Rings 被引量:8

Extensions of McCoy Rings
下载PDF
导出
摘要 A ring R is said to be right McCoy if the equation f(x)g(x) = 0, where y(x) and g(x) are nonzero polynomials of R[x], implies that there exists nonzero s E R such that f(x)s = 0. It is proven that no proper (triangular) matrix ring is one-sided McCoy. It is shown that for many polynomial extensions, a ring R is right Mccoy if and only if the polynomial extension over R is right Mccoy. A ring R is said to be right McCoy if the equation f(x)g(x) = 0, where y(x) and g(x) are nonzero polynomials of R[x], implies that there exists nonzero s E R such that f(x)s = 0. It is proven that no proper (triangular) matrix ring is one-sided McCoy. It is shown that for many polynomial extensions, a ring R is right Mccoy if and only if the polynomial extension over R is right Mccoy.
出处 《Northeastern Mathematical Journal》 CSCD 2008年第1期85-94,共10页 东北数学(英文版)
基金 The NNSF(10571026)of China the Specialized Research Fund(20060286006)for the Doctoral Program of Higher Education.
关键词 matrix ring McCoy ring polynomial ring upper triangular matrix ring matrix ring, McCoy ring, polynomial ring, upper triangular matrix ring
  • 相关文献

参考文献10

  • 1Lei Z,Chen J.L,and Ying Z.L.A question on McCoy rings[].Bulletin of the Australian Mathematical Society.2007
  • 2Weiner,L.Concerning a theorem of McCoy[].The American Mathematical Monthly.1952
  • 3Koike,K.Dual rings and cogenerator rings[].MathJOkayama Univ.1995
  • 4Hong,C.Y,Kim,N.K,and Kwak,T.K.Ore extensions of Baer and p.p.-rings[].JPure ApplAlgebra.2000
  • 5NIELSEN P P.Semi-commutativity and the McCoy condition[].Journal of Algebra.2006
  • 6MCCOY N H.Remarks on divisors of zero[].The American Mathematical Monthly.1942
  • 7REGEM B,CHHAWCHHARIA S.Armendariz rings[].Proceedings of the Japan Academy.1997
  • 8KIM N K,,LEE Y.Armendariz rings and reduced rings[].Journal of Algebra.2000
  • 9McConnell J C,Robson J C.Noncommutative noetherian rings[].New York: John Wiley and Sons.1987
  • 10Krempa J.Some examples of reduced rings[].Algebra Colloquium.1996

同被引文献4

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部