期刊文献+

非局部边界条件下的抛物型偏微分方程组 被引量:3

Parabolic Partial Differential Equation Systems with Non-local Boundary Conditions
下载PDF
导出
摘要 本文首先讨论了一个非局部边界条件下的抛物型偏微分方程组,通过一个变量替换,使得在更宽松的边界假设条件下证明了解的存在唯一性;然后讨论了一个完全非线性的抛物型方程组,同样,通过变量替换证明了比较原理. In this paper, a non-linear parabolic partial differential equation system with non-local boundary conditions is investigated. By using variables transformation, it follows the existence and uniqueness of the solutions under weaker assumption on boundary conditions than before; and it also proves the comparison principle for a fully non-linear parabolic equation system.
出处 《应用数学与计算数学学报》 2008年第1期21-30,共10页 Communication on Applied Mathematics and Computation
关键词 上下解 非局部边界条件 解的存在唯一性 拟单调 比较原理 upper and lower solutions, non-local boundary conditions, the existence and uniqueness of solution, quasi-monotone, comparison principle
  • 相关文献

参考文献4

  • 1闫丽琴,王远弟.非局部初边值条件下的抛物型偏微分方程[J].应用数学与计算数学学报,2005,19(1):1-10. 被引量:2
  • 2Wang Rongnian, Xiao Tijun, Liang Jin. A comparison principle for non-local coupled systems of fully non-linear parabolic equations[J]. Applied Mathematics Letters, January 2006.
  • 3Day W.A. Extension of a property of the heat equation to linear thermoelasticity and other theories[J]. Quart. Appl. Math., 1982, 40: 319-330.
  • 4Day W.A. A decreasing property of solutions of parabolic equations with applications to thermoelasticity[J]. Quart. Appl. Math., 1983, 40: 468-475.

二级参考文献11

  • 1Friedman A. Partial differential equations of parabolic type. Englewood Cliffs, N. J: PrenticeHall, 1983.
  • 2Day W.A. A decreasing property of solutions of parabolic equations with applications to thermoelasticity Quart. Appl. Math.,1983, 40: 468~475.
  • 3Kerefov A.A. Nonlocal boundary value problems for parabolic equations. Differential'nye Uravneniya, 1979, 15: 74~78.
  • 4Vabishchevich P.N. Nonlocal parabolic problems and inverse heat-condition problem. Differential'nye Uravneniya, 1981, 17: 1193~1199.
  • 5Day W.A. Extencsion of a property of the heat equation to linear thermoelasticity and other theories. Quart. Appl. Math.,1982, 40: 319~330.
  • 6Deng, K. Comparision principle for some nonlocal problems. Quart. Appl. Math., 1992, 50:517~522.
  • 7Pao C.V.Dynamics of reaction-diffusion equations with nonlocal boundary conditions. Quart.Appl. Math.,1995, 53: 173~186.
  • 8Pao C.V. Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions.J. Math. Anal. Appl., 1997, 5: 319~327.
  • 9V.Lakshmikantham,Vatsala A.S. Generalized quasilinearization and semilinear elliptic boundary value problems. J. Math. Anal. Appl., 2000, 249: 199~220.
  • 10Wang Y.D. Solutions to nonlinear elliptic equations with a nonlocal boundary condition. Electron. J. Diff. Eqs., 2002, 5: 1~16.

共引文献1

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部