摘要
提出一种有效的计算级联Z形码最小距离的方法。该方法将多维的级联Z形码并行地分成两个低维数的分量码,其中有一个分量码的维数固定为2,然后找出所有能在该二维分量码中产生低于某个已知的最小距离上限的输入序列,再验证这些序列在整个码中产生的距离,从而找出最小距离。从最后数字结果来看,使用普通的个人计算机,该方法能够在111小时内为码率为1/2的级联Z形码找出最小距离20,而在38小时内为码率为1/3的级联Z形码找到最小距离26。
This paper proposes an efficient method to compute the minimum distance for concatenated zigzag codes. Firstly, the multi-dimensional concatenated zigzag code is divided into two component codes. And the dimension of one of them is 2, The method is to find all of, input sequences that can generate the distance that is lower than an upper bound of the minimum distance from the 2-dimensional component code. Then, compute the overall distances generated by these input sequences, from which the minimum distance will be found, From the numerical results, the method can take 111 hours for a rate 1/2 concatenated zigzag code to find a minimum distance 20, and take 38 hours for a rate 1/3 code to find a minimum .distance 26.
出处
《电子技术应用》
北大核心
2008年第7期88-90,93,共4页
Application of Electronic Technique
基金
国家自然科学基金项目(60496313)
关键词
Z形码
最小距离
环
联合界
zigzag codes
minimum distance
cycle
union bound