期刊文献+

基于数据库划分的关联规则算法 被引量:5

Association rules arithmetic based on database partition
下载PDF
导出
摘要 关联规则是数据挖掘的一个重要研究方向。分析了FP算法的优缺点,提出了一种基于数据库划分的算法PFp算法,从理论上证明了该算法的正确性。该方法将事务数据库划分为子事务数据库,在子事务数据库中挖掘局部频繁项集,并入到全局频繁项集中,采用连接和剪枝策略有效挖掘出局部不频繁但全局频繁的频繁项集。实验结果表明,该算法比FP算法更加有效。 Association rules are an important research aspect of data mining. The traditional FP arithrnetic's advantage and disadvantage are analyzed, and a arithmetic called PFp based on partition is presented. It was proved to be right in the theory. This method divided the database into several sub databases, and mine the local frequent item sets in the local database, then insert the local frequent item sets into the global frequent item sets. Pruning strategy is used to mine the global frequent item sets which are not frequent in the local database. The experience shows that the PFp is more effective than FP arithmetic.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第12期3005-3007,3015,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60603041) 江苏省高校自然科学基金项目(D5KJB520017)
关键词 关联规则 频繁项集 FP树 子事务数据库 剪枝 association rules frequent item sets FP-tree sub database pruning
  • 相关文献

参考文献8

二级参考文献40

  • 1RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,.
  • 2Han J,Kamber M.Data mining:concepts and techniques[M].San Francisco:Academic Press,2001.4-22.
  • 3Agrawa L R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[A].Proceedings of the ACM SIGMOD Conference on Management of Data[C].New York:ACM Press,1993.207-216.
  • 4Aly H H,Taha Y,Amr A A.Fast mining of association rules in large-scale problems[A].Proceedings of the 6th IEEE Symp on Computers and Communications (ISCC 2001)[C].New York:IEEE Computer Society Press,2001.107-113.
  • 5Tsai C F,Lin Y C,Chen C P.A new fast algorithms for mining association rules in large databases[A].Proceedings of the 2002 IEEE International Conference on Systems,Man and Cybernetics(SMC 2002)[C].New York:IEEE Computer Society Press,2002.251-256.
  • 6Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[A].Proceedings of the ACM SIGMOD Conference[C].Dallas:ACM Press,2000.1-12.
  • 7Mohammed J.Mining non-redundant association rules[J].Data Mining and Knowledge Discovery,2004,9(11):223-248.
  • 8Kantardzic M.Data mining concepts,models,methods,and algorithms[M].Beijing:Tsinghua University Press,2003.151-152.
  • 9Agrawa L R.Fast algorithms for mining association rules[A].Proceedings of the 20th International Conference on Very Large Databases[C].Santiago:Morgan Kaufmann,1994.487-499.
  • 10[1]R Agrawal,T Imielinski, A Swami.Mining association rules between sets of items in large database[A]. Peter Buneman, Sushil Jajodia. Proceedings of SIGMID' 93 [ C ]. Washington, D· C: AC MPress, 1993:207-216.

共引文献52

同被引文献54

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部