期刊文献+

基于RSAPSO算法的网络计划综合优化

Network planning multi-objective optimization based on RSAPSO
下载PDF
导出
摘要 为了提高电力工程企业的经济效益,在综合考虑成本、质量和进度的基础上,提出了工期-收益-质量多目标优化模型。粒子群优化算法是基于群体智能理论的算法。该算法利用生物群体内个体的合作与竞争等复杂性行为产生群体智能,并为工程优化问题提供高效的解决方法。但是粒子群优化算法同样存在一些问题,针对这些问题提出了一种新算法,即基于速度松弛策略的模拟退火粒子群算法(RSAPSO)。运用RSAPSO算法对多目标优化模型进行求解,最后通过工程实例验证模型和算法的有效性。 Based on the synthetic study of costing, quality and construction period, the multi-objective optimal model considering the maximal pure value and quality of electric power construction project is introduced in order to improve economic benefit of electric power construction enterprise. Particle swarm optimization (PSO) algorithm is based on swarm intelligence theory. The algorithm can provide efficient solutions for optimization problems through intelligence generated from complex activities such as cooperation and competition among individuals in the biologic colony. But, the PSO algorithm also had some problems. In dealing with these problems, a new method called RSAPSO (particle swarm optimization and simulated annealing based on the strategy of relaxation-velocity-update) is introduced into the model of multi-objective optimization. The model and validity of this algorithm are tested through project case.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第12期3237-3239,共3页 Computer Engineering and Design
基金 华北电力大学青年教师科研基金项目(200611041)
关键词 网络计划 多目标优化 粒子群算法 速度松弛策略 模拟退火 network planning multi-objective optimization particle swarm optimization relaxation-velocity-update strategy simulated annealing
  • 相关文献

参考文献8

二级参考文献27

  • 1刘明广.差异演化算法及其改进[J].系统工程,2005,23(2):108-111. 被引量:38
  • 2宣以政.工程项目网络计划的综合优化及其动态优化管理[J].成都大学学报(自然科学版),1996,15(2):38-42. 被引量:13
  • 3杨劲.建设项目进度控制[M].地震出版社,1995..
  • 4建筑施工手册编写组.建筑施工手册[S].北京,2000.7.
  • 5马振华 等.运筹学与最优化理论卷[M].清华大学出版社,1998.138-140.
  • 6周树发.建筑施工[M].北京:中国铁道出版社,2001..
  • 7Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,15(11):341 ~ 359
  • 8Wang Fengsheng,Jang H J.Parameter estimation of a bioreactor model by hybrid differential evolution[A].Proceedings of the 2000 Congress,Digital Object Identifier[C].2000.410 ~ 417
  • 9Kennedy J,Eberhart R C.Particle swarm optimization[C]∥ Proceedings of the 1995 IEEE International Conference on Neural Networks.Los Angeles,USA:IEEE,1995:1942-1948.
  • 10Kennedy J,Mendes R.Population structure and particle swarm performance[C]∥ Proceedings of the 2002 Congress on Evolutionary Computation.Los Angeles,USA:IEEE,2002:1671-1676.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部