期刊文献+

基于改进局部搜索遗传算法的目标分配决策 被引量:14

Target allocation decision making based on improved genetic algorithms with local search
下载PDF
导出
摘要 为满足舰载武器目标分配需求,对传统的局部搜索遗传算法进行了改进,并用其求解目标分配问题的最优解。构造了适合于目标分配问题的染色体;设计了搜索性能较好且能够保留优秀基因的交叉操作方法;将局部搜索机制引入标准遗传算法,提高了目标分配算法的收敛速度;把模拟退火算法引入局部搜索问题,在一定程度上避免了局部最优问题;将贪婪算法应用于局部搜索提高了最优分配方案的搜索效率。仿真计算表明,改进局部搜索遗传算法的目标分配性能优于已有算法。 To make proper target allocation (TA) for ship borne weapons, an improved genetic algorithm (GA) with local search is proposed. Suitable chromosomes are constructed for the TA problem. A new cross- over operator is proposed to keep good genes and enhance the search performance. Local search mechanism is added into GA to find solutions for TA problems with a more rapid convergence speed, Simulated annealing (SA) is used to overcome the problem of local optimum. A heuristically greedy local search is also proposed to improve the search efficiency. The simulation results show that the improved algorithm can improve the search efficiency of GA. Several examples are also exploited to explicit the superiority of the proposed approach over other existing algorithms,
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第6期1114-1117,1162,共5页 Systems Engineering and Electronics
关键词 目标分配决策 遗传算法 模拟退火算法 贪婪算法 target allocation genetic algorithm simulated annealing algorithm greedy algorithm
  • 相关文献

参考文献9

  • 1Lee Z J, Su S F, Lee C Y. Efficiently solving general weapon target assignment problem by genetic algorithms with greedy eu genics[J]. IEEE Trans. on Systems, Man, and Cybernetics PartB: Cybernetics, 2003, 33(1): 113-121.
  • 2Chaudhry S S. Luo W. Application of genetic algorithms in production and operations management : A review[J].International Journal of Production Research , 2005, 43(19):4083 - 4101.
  • 3Merz P, Freisleben B. Fitness landscape analysis and memetic algorithms for quadratic assignment problem[J]. IEEE Trans. on Evolutionary Computation. 2000. 4(4) : 337 - 352.
  • 4Lee Z J, Lee C Y. A hybrid search algorithm with heuristics for resource allocation problem[J]. Information Sciences, 2005, 173:155-167.
  • 5Aytug H, Khouja M, Vergara F E. Use of genetic algorithms to solve production and operations management problems: A review[J]. International Journal of Production Research , 2003, 41(17): 3955-4009.
  • 6Bisht S. Hybrid genetic-simulated annealing algorithm for optimal weapon allocation in multilayer defence scenario[J]. Defence Science Journal, 2004, 54(3): 395-405.
  • 7Mahapatra N K, Bhunia A K, Maiti M. A multi-objective mode of wholesaler-retailers problem VIA genetic algorithm [J]. Journal of Applied Mathematics and Computing , 2005, 19(1-2): 397-414.
  • 8Aydin M E, Fogarty T C. A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems[J]. Journal of Heuristics, 2004, 10(3) :269 - 292.
  • 9Jiao L, Wang L. Novel genetic algorithm based on immunity[J]. IEEE Trans. Systems, Man and Cybernetics, Part A. , 2000, 30(5): 552-561.

同被引文献160

引证文献14

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部