期刊文献+

基于重编码的快速标量乘算法 被引量:1

Fast algorithm of scalar multiplication based on recoding
下载PDF
导出
摘要 采用回溯法设计出一种重编码算法。该算法只需对标量序列进行一次变换、至多四个中间变量,以及只需基于比特位比较赋值操作,效率更高,利于硬件实现标量乘法,并证明了所得结果具有正则序列的性质。该算法应用到计算数字签名中常用的gP+hQ时,得到g、h的具有最小联合重量序列。 This paper designed a recoding algorithm which scans the sequence of the scalar only once, employed four intermediate variables at most as well as comparisons and evaluations on digits. The algorithm was more efficient and more convenient to application of scalar multiplication on hardware, The result is proved to possess the character of the canonical representation. When the algorithm is applied to compute gP + hQ in digital signatures, the result is unique, optimal and has the least joint weight.
出处 《计算机应用研究》 CSCD 北大核心 2008年第7期2143-2145,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(NSF60473012) 江苏省六大人才高峰项目(06-E-025)
关键词 椭圆曲线密码体制 标量乘法 重编码 gP+hQ 硬件设计 ECC scalar multiplication reeoding KP + hQ hardware design
  • 相关文献

参考文献9

  • 1LOPEZ J, DAHAB R. An overview of elliptic curve cryptography [ R]. Brazil: Institute of Computing, State University of Campinas, 2000.
  • 2SOLINAS J A. Low-weight binary representations for pairs of integers [ EB/OL]. (2001). http ://www. cacr. math. uwaterloo. ca/techreports/2001/corr2001-41. ps .
  • 3KATSUYUKI O, KATJA S S, CHRISTIAN S, et al. Signed binary representations revisited [ C ]//Proc of LNCS. [ S. l. ] : Springer-Verlag, 2004 : 123.
  • 4REITWIESNER G W. A binary arithmetic[ J]. Advances in Computers,1960,19( 1 ) :231-308.
  • 5KOYAMA K, TSURUOKA Y. Speeding up elliptic cryptosystems by using a signed binary window method [ C ]//Proc of Advances in Cryptology-Crypto'92. [ S. l. ] : Springer-Verlag, 1993.
  • 6JOYE M, YEN S M. Optimal left-to-right binary signed-digit recoding [J]. IEEE Trans on Computers,2000,49(7):740-748.
  • 7RUAN Xiao-yu, KATTI R S. On the signed-binary window method [ C ]//Proc of IEEE Internationd Symosium on Circuits and Systems. 2005:4501-4504.
  • 8GRABNERA P J, HEUBERGERB C, PRODINGERC H. Distribution results for low-weight binary representations for pairs of integers [ J ]. Theoretical Computer Science, 2004, 319 ( 1- 3 ) : 307- 331.
  • 9ELGAMAL T. A public-key cryptosystem and signature scheme based on discrete logarithms[ J]. The IEEE Trans on Information Theory, 1985,31 (14) :469-472.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部