期刊文献+

一种简化的SIFT图像特征点提取算法 被引量:31

Simplified SIFT feature point detecting method
下载PDF
导出
摘要 针对目前尺度不变的图像特征点提取算法计算量较大,算法较复杂的问题,提出一种简化的SIFT图像特征点提取算法。此算法通过改变金字塔尺度空间的结构实现对SIFT特征点提取过程的简化,通过改变特征点描述子的结构实现对特征向量计算的简化,从而在保证算法鲁棒性的同时减少了计算量并增强了实时性。实验证明了该算法的有效性。 The scale-invariant image feature point detecting methods are always complex and need large computation. In order to solve the problem, this paper proposed a feature point detecting method which was a simplification of the SIFT method. The method changed the pyramid frame in image scale space to simplify the SIFT feature point detecting process and changed the descriptor configuration to simplify the eigenvector computation. It could ensure the performance and decrease the computation at the same time. The experimental results have proved its validity.
出处 《计算机应用研究》 CSCD 北大核心 2008年第7期2213-2215,2222,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60675028)
关键词 特征点提取 图像匹配 尺度不变特征变换算法 feature point detection image matching SIFT(scale invariant feature transform) method
  • 相关文献

参考文献10

  • 1HARRIS C, STEPHENS M. A combined corner and edge detector [ C]// Proc of the 4th Alvey Vision Conference. Manchester: [ s. n. ], 1988: 147-151.
  • 2MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points [ C ]// Proc of the 8th International Conference on Computer Vision. Vancouver: [ s. n. ] , 2001 : 525-531.
  • 3CARNEIRO G, JEPSON A D. Multi-scale phase-based local features [ C]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003: 736-743.
  • 4JOHANSSON B, MOE A. Patch-duplets for object recognition and pose estimation[ C]//Proc of the 2nd Canadian Conference on Computer and Robot Vision. 2005: 9-16.
  • 5LOWED G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 6BROWN M, LOWED G. Recognising panoramas [ C]// Proc of the 9th International Conference on Computer Vision. Nice: [ s. n. ], 2003 : 1218-1225.
  • 7SE S, LOWED G, LITTLE J J. Vision-based global localization and mapping for mobile robots [ J]. IEEE Trans on Robotics, 2005,21 (3) : 364-375.
  • 8LINDEBERG T. Feature detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998, 30 (2) : 79-116.
  • 9GAO Jian, HUANG Xin-han, PENG Gang, et al. A quick feature detecting method applied in robot vision [ C ]//Proc of IEEE International Conference on Mechatronics and Automation. Haerbin: [ s. n. ], 2007 : 736-743.
  • 10SCHMID C, MOHR R, BAUCKHAGE C. Comparing and evaluating interest points [ C ]// Proc of the 6th International Conference on Computer Vision. 1998: 230-235.

同被引文献318

引证文献31

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部