期刊文献+

碳纳米管端口的场蒸发 被引量:2

Field evaporation of the end of a carbon nanotube
原文传递
导出
摘要 将单根多壁碳纳米管(multi-walled carbon nanotube,MWCNT)组装在W针尖上并送入超高真空场发射/场离子显微镜(Ultrahigh Vacuum Field-emission/Field-Ion microscope,UHV-FEM/FIM)进行场蒸发及场发射研究.结果表明,场蒸发可以降低MWCNT的逸出功,从而增强其场发射能力.估算MWCNT的蒸发场低于1.3×108V·cm-1,且在此场强下的平均蒸发速率为9.4nm·min-1.定性讨论了MWCNT的蒸发场大大低于C的理论值的原因.首先,通过场解吸获得的清洁端口上有较多悬挂键,平均每个C原子的配位数较小,所以升华热较低.其次,可能存在于MWCNT中的H原子会在强场下碰撞端口的C原子,使其更易蒸发.以上结果显示了利用场蒸发剪短碳纳米管从而改善其场发射特性的可行性. A single multi-walled carbon nanotube (MWCNT) was assembled onto a W tip and transferred to an ultrahigh vacuum field- emission/field-ion microscope (UHV-FEM/FIM)for the study of field evaporation and field emission. The results showed that the field evaporation lowered the work function of the MWCNT and thus enhanced its field emission. The evaporation field of the MWCNT was estimated to be lower than 1.3 × 10^8 V·cm^-1 and the evaporation rate under this field was measured to be 9.4 nm·min^- 1 . The physical origin of the fact that the evaporation field of the MWCNT was much lower than the theoretical value for carbon is also qualitatively explained. Firstly, the clean end of the MWCNT, which resulted from field desorption, contained a large number of dangling bonds and the C atoms on it had small coordination number, thus the heat of sublimation of these C atoms was low. Secondly, H atoms that possibly existed in the MWCNT could collide with the C atoms under strong electric field and make the latter evaporate easier. These results indicated an effective approach to obtaining better field emission performance of a carbon nanotube by cutting it short using field evaporation.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第7期4596-4601,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60771004) 国家重点基础研究发展规划(批准号:2006CB932402) 国家高技术研究发展计划(批准号:2006AA05Z107)资助的课题~~
关键词 碳纳米管 场蒸发 场发射 carbon nanotube, field evaporation, field emission
  • 相关文献

参考文献37

  • 1Iijima S 1991 Nature 354 56
  • 2Hamada S I, Oshiyama A 1992 Phys. Rev. Lett. 68 157
  • 3Treacy M J,Ebbesen T W,Gibson J M 1996 Nature 381 678
  • 4Falvo M R,Clary G J,Taylor R M,Chi V,Brooks F P,Washburn S, Superfine R 1997 Nature 389 582
  • 5Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59
  • 6Odom T W,Lin H J,Kim P, Lieber C M 1998 Nature 391 62
  • 7Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, Ruoff R S 2000 Science 2,87 637
  • 8Gudiksen M S, Lauhon L J, Wang J, Smith D C, LieDer C M 2002 Nature 415 617
  • 9Baughman R H,Zakhidov A A, de Heer W A 2002 Science 297 787
  • 10Minor E D, Yaish Y, Sazonova V, McEuen P L 2004 Nature 428 536

二级参考文献13

  • 1王新庆,王淼,李振华,杨兵,王凤飞,何丕模,徐亚伯.单根纳米导线场发射增强因子的计算[J].物理学报,2005,54(3):1347-1351. 被引量:14
  • 2Iijima S 1991 Nature 354 56
  • 3Liu C,Fan Y Y,Liu M et al 1999 Science 286 1129
  • 4Yahachi S,Sashiro U 2000 Carbon 38 169
  • 5Bonard J M,Stockli N,Noury O,Chatelain A 2001 Appl.Phys.Lett.78 2775
  • 6Zheng X,Chen G H,Li Z,Deng,S,Xu N 2004 Phys.Rev.Lett.92 106803
  • 7Buldum A,Lu J P 2003 Phys.Rev.Lett.91 236801
  • 8Chang C S,Chattopadhyay S,Chen L C et al 2003 Phys.Rev.B 68 125322
  • 9Kokkorakis G C,Roumeliotis J A,Xanthakis J P 2004 J.Appl.Phys.95 1468
  • 10WangX Q,WangM,He P M,Xu Y B,Li Z H 2004 J.Appl.Phys.96 6752

共引文献8

同被引文献38

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部