期刊文献+

三维Radon变换的一种快速解析方法

Fast Computation of 3D Radon Transform Via a Geometrical Method
下载PDF
导出
摘要 3D Radon变换及其反变换是X-CT三维图像重建理论的核心,它在其他许多学科领域也有广泛应用。3D Radon变换的表达式是一个三重积分,按照定义直接计算相当费时。为此,研究一种新的快速的方法实现3D Radon变换,对X-CT图像重建理论及相关领域的发展有重要意义。本文以算法仿真常用椭球模型为基础,通过求解椭球模型与空间任意平面的面积,实现了用解析的方法快速得到模型的Radon变换,进一步比较了它与传统方法的优缺点,最后根据Radon反变换重建出原物体模型;计算机仿真结果验证了这种方法的正确。 Exact three-dimensional reconstruction algorithms are usually based on the three-dimensional Radon transform which is also widely used in other related fields. However, Radon transform consists of all Radon values placed at the corresponding points. Each value is defined as a plane integral in the object domain. So, the computation of Radon value is rather time expensive using direct integral method. New applications based on it may become convenient if a fast and efficient transformation algorithm is adopted. Therefore, an analytical method is proposed to compute the 3D Radon transform in this paper that is based on 3D S-L phantom including spheres and further compare it with the traditional algorithms of their advantages and disadvantages. Finally, the origin object reconstructed by 3D inverse Radon transform has been proved right by the result from computer simulation.
出处 《CT理论与应用研究(中英文)》 2008年第2期1-7,共7页 Computerized Tomography Theory and Applications
基金 国家自然科学基金资助项目(50575015)
关键词 3D RADON变换 X-CT 图像重建 Radon反变换 3D radon transform X-CT image reconstruction inverse radon transform
  • 相关文献

参考文献9

二级参考文献17

  • 1王华建,张爱武,马惠敏,李凤亭.基于统计模型的三维场景重建补洞算法[J].光电子.激光,2004,15(10):1234-1237. 被引量:7
  • 2王小鹏,罗进文.基于形态学梯度重建的分水岭分割[J].光电子.激光,2005,16(1):98-101. 被引量:35
  • 3[5]吴崇试.数学物理方法[M].北京:北京大学出版社,1979.229~253.
  • 4毛希平,学位论文,1997年
  • 5伊尔马兹·渥,地震数据处理,1994年
  • 6吴律,taup变换及应用,1993年
  • 7Herman G T, HUANG Lian-jie, LI You-ming. Basic Methods of Tomography and Inverse Problems IOP Publishing Limited and Individual Contributor [M]. Beijing; Petroleum Industry Press, 1985.
  • 8ZHUANG Tian-ge. The Principle and Algorithm of CT[M]. Shanghai : Shanghai Jiaoda Press, 1992.
  • 9WU Jing. Tomographic Fundamentals with Applications to Crosswell Seismics [M]. Beijing: Petroleum Industry Press,1997.
  • 10Nolet G, WANG Chun-yong, WU Ning-yuan, et al. Image and Applications of Seismic Tomography [M]. Beijing:Science Books and Periodicals Press, 1989.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部