摘要
针对某国产车辆的橡胶悬置系统,应用机械系统动力学仿真分析软件ADAMS,建立了动力总成悬置系统六自由度的动力学模型.通过对动力总成橡胶悬置系统在不同工况下的自振频率、振型、系统的能量分布的计算,得到系统解耦的能量指标,并以该能量指标为设计目标,以各悬置的平动位移和角位移以及橡胶悬置的刚度系数为约束条件进行优化设计.优化结果表明:①Ryy方向的能量分布受刚度系数K9的影响最大,且优化后K9降低了66.51;在第1、4阶Ryy方向的能量分布明显增加,使能量集中分布,减少了这2阶系统能量的耦合程度,即Ryy方向的振动藕合程度减小,提高了隔振效果.②x和y方向的能量分布主要受K4的影响,而Rxx和Rzz方向的能量分布主要受到K1、K3的影响;随着能量分布在Rxx和Rzz方向的集中,K1明显减小,而K3显著增加,即悬置系统在x方向的刚度减小,在z方向的刚度增加.③优化后的动力总成悬置系统能量分布的解耦程度明显优于优化前系统,优化后悬置系统的隔振性能有所提高.
In order to improve the capacity of engine mounting system, the software ADAMS was used to set a six-degree-of-freedom dynamic model of engine mounting system. By calculating and comparing the natural frequency, vibration mode, energy distribution, the energy guideline of the decoupled system was founded. And by making the guideline as the optimized target and constraining the displacement, the angle displacement and the stiffness parameter of the mount parts, the optimal design was done. The results show that: ① Stiffness coefficient K9 has most influence on the energy distribution in Ryy direction and is decreased to 66.51; the energy distributions of No 1 and No 4 mode in Ryy direction are obviously increased to make energy concentrate and to decrease the energy coupling of the two modes. ② The energy distributions in x and y directions are mainly influenced by stiffness coefficient K4 and the energy distributions in Rxx and Rxx directions are mainly influenced by stiffness coefficients K1 and K3 ; along with the energy concentrations in Rxx and Rxx, directions, stiffness coefficient K1 is obviously increased and K3 is significantly increased. ③ The coupling of the energy distribution of engine mounting system after optimization obviously excells that before optimization.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2008年第6期878-881,共4页
Journal of Shanghai Jiaotong University
基金
国家科技支撑计划资助项目(2006BAH02A17)
关键词
动力总成
悬置系统
能量法解耦
仿真
敏感系数
power train
mounting systern
energy method of deeoupling
simulation
sensitivity coefficient