摘要
情绪变化问题是说话人识别技术面临的一个难题。为了解决该问题,提出了基于多项式方程拟合的中性-情感模型转换算法。该算法建立了中性模型和情感模型之间的函数关系,只需要说话人的中性语音就能训练其各种情感类型的说话人模型。在普通话情感语音库上的实验表明,采用该方法后识别算法的等错误率由16.06%降低到10.31%,提高了系统性能。
One of the largest challenges in speaker recognition is dealing with speaker-emotion variability problem.A neutral-emotion model transformation algorithm is presented to overcome this limitation,which builds a relationship between emotion and neutral models.In this method,only neutral speech is needed in training emotion models.The experiments on MASC show that the EER is reduced to 10.31% from the 16.06%,and the recognition performance can be improved by this algorithm.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第21期206-208,221,共4页
Computer Engineering and Applications
基金
国家高技术研究发展计划( 863)( the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z136)
浙江省自然科学基金(the Natural Science Foundation of Zhejiang Province of China under Grant No.Y106705)
关键词
说话人识别
高斯混合模型
情感语音
speaker recognition
gaussian mixture model
emotion speech