期刊文献+

非线性贝叶斯滤波算法综述 被引量:11

A survey of nonlinear Bayesian filtering algorithms
下载PDF
导出
摘要 滤波的目的是从序贯量测中在线、实时地估计和预测出动态系统的状态和误差的统计量。从递归贝叶斯估计的框架出发,对非线性滤波算法作了统一描述,并根据对后验概率密度的近似方法的不同,把非线性滤波划归为3类:基于函数近似的滤波方法、基于确定性采样的滤波方法和基于随机采样的滤波方法。对这些非线性滤波的原理、方法及特点做了分析和评述,最后介绍了非线性滤波研究的新动态,并对其发展作了展望。 The main goal of filtering is to obtain, reeursively in time, optimal estimation and prediction of the dynamical systems and error statistics from the sequential observations. Various nonlinear filtering algorithms are reviewed and interpreted in a unified way using the recursive Bayesian estimation. According to different approximation methods, these approximate nonlinear filters can be categorized into three types:analytical approximations, deterministic - sampling based approaches, and stochastic - sampling based filters. Then the principles, methods and characteristics of above nonlinear filters are analyzed and reviewed in detail. Finally, some representative new developments of the nonlinear filtering are described,and further research prospects are introduced.
出处 《电光与控制》 北大核心 2008年第8期64-71,共8页 Electronics Optics & Control
关键词 非线性滤波 递归贝叶斯估计 差分滤波 无味卡尔曼滤波 粒子滤波 nonlinear filtering recursive Bayesian estimation differential filter unscented Kalman filter particle filter
  • 相关文献

参考文献51

  • 1JAZWINSKI A H. Stochastic processes and filtering theory [ M]. New York: Academic Press, 1970.
  • 2HO Y C, LEE R C K. A Bayesian approach to problems in stochastic estimation and control[ J ]. IEEE Trans. on Automatic Control, 1964,9(1):333-339.
  • 3ANDERSON B D O, MOORE J B. Optimal filtering [ M ]. Prentice Hall, Englewood Cliffs,NJ, 1979.
  • 4SORENSON H W. On the development of practical nonlinear filters[J]. Information Seienees, 1974,7( 1 ) :253-270.
  • 5KALMAN R E. A new approach to linear filtering and prediction problems[J]. Trans. on ASME, Journal of Basic Engineering, 1960, 82 ( 3): 34-45.
  • 6TANIZAKI H. Nonlinear filters: estimation and applications [M]. New York: Springer, 1996.
  • 7KUSHNER H J. Dynamical equations for optimum nonlinear filtering[J]. J of Differential Equations, 1967,26 (3) : 179- 190.
  • 8MAYBECK P S. Stochastic models estimation and control[M]. New York: Academic, 1982.
  • 9JAZWINSKI A H. Stochastic processes and filtering theory [J]. American Science, 1992, 80(2):128-141.
  • 10PACHTER M, CHANDLER P R. Universal linearization concept for extended Kalman filters [ J ]. IEEE Trans. on Aerospace and Electronic System, 1993,29(3):946-961.

二级参考文献84

  • 1张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 2张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538. 被引量:45
  • 3Farina A, Ristic B, Benvenuti D. Tracking a ballistic target:comparison of several nonlinear filters[ J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(3): 854 - 867.
  • 4Chai L, Yuan J P, Fang Q, et al. Neural network aided adaptive kalman filter for multi-sensors integrated navigation [ J ]. Lecture Notes in Computer Science, Springer-Verlag, 2004, 3174:381 -386.
  • 5Nφrgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear system [ J ]. Automatica, 2000, 36 ( 11 ):1627 - 1638.
  • 6Schei T S. A finite difference method for linearization in nonlinear eatimation algorithms[J]. Automatica, 1997, 33(11): 2051 - 2058.
  • 7Wan E A, Van der Merwe R. The unscented kalman filter for nonlinear estimation [ A ]. In: Proc of the Symposium 2000 on Adaptive System for Signal Processing, Communication and Control(AS-SPCC)[C], Lake Louise, Alberta, Canada, October 2000,IEEE.
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation[A]. In: Proc of the Radar and Signal Processing[C], 1993:107 - 113.
  • 9Van der Merwe R, Doucet A, Freitas N, Wan E A. The Unscented Particle Filter[R]. Technical Report CUED/F- INFENG/TR 380,Cambridge University, 2000..
  • 10Higuchi T. Monte carlo filter using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation, 1997, 59(1): 1-23.

共引文献106

同被引文献127

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部