期刊文献+

基于局部和全局特征的人脸识别方法

Face Recognition Based on Local and Global Feature
下载PDF
导出
摘要 提出了一种将局部特征识别与全局特征识别相结合的人脸识别方法。该算法首先提取人脸的局部特征进行识别,然后提取未识别图像的全局特征进行识别。基于ORL人脸数据库的实验证明了该算法的识别性能要优于单一特征识别方法。 A face recognition technique based on local feature and global feature was presented. First the original face image's local features were extracted. Then utilize nearest neighbor to classify and extract the error classify image's global feature, also utilize nearest neighbor to classify. The experiment shows that the performance of the proposed method in this article is superior to that of single feature.
作者 沈锐 王展青
出处 《计算机与数字工程》 2008年第7期152-153,共2页 Computer & Digital Engineering
关键词 人脸识别 主成分分析 局部特征 全局特征 face recognition, principle component analysis, local feature, global feature
  • 相关文献

参考文献6

  • 1M. Kirby L. Sirovich. Application of the Karhunen - Loeve Procedure for the Characterization of Human Faces[ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 ( 1 ) : 103 - 108.
  • 2Matthew Turk, Alex Pentland. Eigenfaces for Recognition[ J] . Cognitive Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 3Peter N. Belhumeur, Joao P. Hespanha & David J. Kriegman. Eigenfaces vs. Fisheffaces: Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, 19(7 ) :711 - 720.
  • 4Chen Song - can, Zhu Yu - lian. Subpattern - based principle component analysis[J].Pattern Recognition, 2004, 37(5) , 1081 - 1083.
  • 5W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips. Face Recognition: A Literature Survey[ J]. ACM Computing Surveys, 2003:399 -458.
  • 6庞彦伟,刘政凯,俞能海.融合奇异值分解和主分量分析的人脸识别算法[J].信号处理,2005,21(2):202-205. 被引量:13

二级参考文献15

  • 1R. Chellappa, C.L Wilson, S. Sirohey, Human and machine recognition of faces: a survey, Proc. IEEE,1995, 83 (5): 705-740.
  • 2M. Turk, A. Pentland, “Face recognition using eigen-faces”, In: Proc. IEEE Conf. On Computer Vision and Pattern Recognition, 1991, 586-591.
  • 3Diego A. Socolinsky, Andrea Selinger, and Joshua D.Neuheisel, Face recognition with visible and thermal infrared imagery, Computer Vision and Image Unders-tanding, 2003, 91: 72-114.
  • 4E Tsalakanidou, D.Tzovaras, M.G. Strintzis, “Use of depth and colour eigenfaces for face recognition”, Pattern recognition letters, 2003, 24: 1427-1435.
  • 5J. Kittler and E Roli Eds, Proceedings of the First Intemational Workshop on Multiple Classifier Systems,Springer LNCS 1857, Itanly, 2000.
  • 6F. Roli and J. Kittler Eds., Proceedings of the Third Intemational Workshop on Multiple Classifier Systems,Springer LNCS 2364, Italy, 2002.
  • 7Bernard Achermann, Horst Bunke, “Combination of face classifiers for person indentification,” Proceedings of the 13^th IAPR international conference on Pattern recognition(ICPR), 1996, 3: 416-420.
  • 8Gian Luca Marcialis and Fabio Roli, “Fusion of LDA and PCA for face verification”, Proceedings of the Workshop on Biometric Authentication, M. Tistarel and J. Bigun Eds., Springer LNCS 2359, 2002.
  • 9Xiaoguang Lu, Yunhong Wang, Anil K.Jain, “Combining classifier for face recognition,” Interna- tional Conference on Multimedia and Expo, 2003, 3: 16-19.
  • 10J. Kittler, M. Hatef, R.Ruin, and J. Matas, “On combining classifiers,” IEEE Trans. on PAMI, 1998, 20 (3):226-239.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部