期刊文献+

紧致带边黎曼流形上的Ricci形变

Ricci deformation of the metric on a Riemannian manifolds
下载PDF
导出
摘要 研究n维紧致带边流形的Ricci形变问题,得到在如下拼脐条件下|W|2+|V|2≤3(n1-2)|U|2,则(M,g)在Ricci流下可形变为(M,g∞),使得(M,g∞)具有常正曲率和全测地边界. The metric deformation is studied on smooth compact n dimension Riemannian manifolds with totally geodesic boundry with the :pinching condition as follows:|W|^2+|V|^2≤1/3(n-2)|U|^2,then (M,g) can be deformed to (M,g∞), so that (M, g∞) has constant positive curvature with totally geodesic.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2008年第4期381-384,394,共5页 Journal of Zhejiang University(Science Edition)
基金 安徽省教育厅重点项目(KJ2008A030) 安徽省教育厅项目(KJ2008B237) 安徽建筑工业学院博士基金(2007-6-3)
关键词 RICCI流 拼脐条件 形变 Ricci flow pinching deformation
  • 相关文献

参考文献9

  • 1SHEN Ying. On Ricci deformation of a Riemannian metric on manifolds with boundary[J]. Pacific Math, 1996,173(1) :203-221.
  • 2陈旭忠,董婷.紧致带边黎曼流形上度量的Ricci形变[J].浙江大学学报(理学版),2006,33(5):496-499. 被引量:1
  • 3宣满友,刘继志,蔡开仁.黎曼流形上度量的Ricci流的一个定理[J].北京师范大学学报(自然科学版),2001,37(2):162-165. 被引量:1
  • 4SHI W X. Deformetion of the metric on complete Riemannian manifolds [J]. Diff Geom, 1989,30 : 223-301.
  • 5SHI W X. Ricci deformation of the metric on complete noncompact Riemannian manifolds[J]. Diff Geom, 1989,30:303-394
  • 6HUISKEN G. Ricci deformation of the metric on a Riemannian manifolds[J]. Diff Geom, 1985,17 : 47-62.
  • 7HAMILTON R S. Three manifolds with positive Ricci curvature [J]. Diff Geom,1982,17:255-306.
  • 8HAMILTON R S. Four manifolds with positive Ricci curvature operator [J]. Diff Geom, 1986,24 : 153-179.
  • 9CHEN B L, ZHU X P. Complete Riemannian manifolds with pointwise pinched curvature [J]. Invent Math, 2000,140 : 423-452.

二级参考文献9

  • 1[1]Huisken G. Ricci deformation of the metric on a Riemannian manifold[J]. J Differ Geom, 1985, 21:47
  • 2[2]Bourguignon J P, Lawson H B. Stability and isolation phenomena for Yang-Mills fields[J]. Commun Math, 1981, 79:189
  • 3[3]Hamilton R S. Three-manifold with positive Ricci curvature[J]. J Differ Geom, 1982, 17:255
  • 4HAMILTON R S.Three-manifolds with positive Ricci curvature[J].J Differential Geometry,1982,17:255-306.
  • 5HAMILTON R S.Four-manifolds with positive curvature operator[J].J Differential Geometry,1986,24:153-179.
  • 6SHEN Y.On Ricci deformation of a Riemannian metric on manifold with boundary[J].Pacific J Math,1996,173(1):203-221.
  • 7HUISKEN G.Ricci deformation of the metric on a Riemannian manifold[J].J Differential Geometry,1985,21:47-62.
  • 8SIMONS J.Minimal varieties in Riemannian manifolds[J] Ann of Math,1968,88(2):62-105.
  • 9陈颖,董婷.局部对称的伪黎曼流形中的极大类空子流形[J].浙江大学学报(理学版),2003,30(2):128-132. 被引量:11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部