摘要
研究n维紧致带边流形的Ricci形变问题,得到在如下拼脐条件下|W|2+|V|2≤3(n1-2)|U|2,则(M,g)在Ricci流下可形变为(M,g∞),使得(M,g∞)具有常正曲率和全测地边界.
The metric deformation is studied on smooth compact n dimension Riemannian manifolds with totally geodesic boundry with the :pinching condition as follows:|W|^2+|V|^2≤1/3(n-2)|U|^2,then (M,g) can be deformed to (M,g∞), so that (M, g∞) has constant positive curvature with totally geodesic.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2008年第4期381-384,394,共5页
Journal of Zhejiang University(Science Edition)
基金
安徽省教育厅重点项目(KJ2008A030)
安徽省教育厅项目(KJ2008B237)
安徽建筑工业学院博士基金(2007-6-3)