期刊文献+

等腰梯形的单叶性内径 被引量:3

The Inner Rdias of Univalence of Isosceles Trapezoid
下载PDF
导出
摘要 利用David Calvis方法研究等腰梯形的单叶性内径,证明了边序列为aaab最小角为kπ(其中b=a+2acoskπ,0≤k≤1/3)的等腰梯形P的单叶性内径为2k2. In this paper, we take advantage of the method of David Calvis to proof that the inner mdias of univalence of isosceles trapezoidwhose sides sequence is aaab and the minimun angle is kπ(where b = a + 2acos kπ,0 ≤ k ≤ 1/3) to be2k^2 .
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期313-316,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10771059) 江西省自然科学基金(2007GZS0166)资助项目
关键词 单叶性内径 等腰梯形 分式线性变换 the inner radias of univalence isosceles trapezoid Moebius transformation
  • 相关文献

参考文献9

  • 1Nahari Z. The Schwarizn derivative and Schlidht functions[ J]. Bull Amer Math Soc, 1949,55:545-551.
  • 2Hill E. Remarks on a paper by Zeev Nehari[J]. Bull Amer Math Soc, 1949,55:552-553.
  • 3Lehtinen M. On the inner radius of univalency for non-circular domains[J]. Ann Acad Sci Fenn Ser A I Math, 1980,5:45-47.
  • 4Ahlfors M V. Qusiconformal reflections[J] .Acta Math, 1963, 109:291-301.
  • 5Gehring F W. Univalent functions and the Schwarz derivative[J] .Comm Math Helv, 1977, 52: 561-572.
  • 6Lehto O. Remark on Neheri' s theorem about the Schwarz derivative and Schlicht function[ J ]. J Anaslyse Math, 1979,36:184-190.
  • 7Calvis D. The inner radias of univalenee of normal circular tiranglers and regular polygons[ J]. Complex Variables, 1985,4:295-304.
  • 8Leila Miller-Van Weiren. Univalence criteria for classes of rectangle and equiangular hexagons[J].Ann Acad Fenn Ser A I Math, 1997, 22:407-424.
  • 9朱华成.菱形的单叶性内径[J].数学年刊(A辑),2001,22(1):77-80. 被引量:7

二级参考文献5

  • 1[1]Leila Miller-Van Wieren Univalence criteria for classes of rectanglesand equiangularhexagon [J],Ann. Acad. Sci. Fenn. Math.,22(1997),407--424
  • 2[2]David Calvis The inner radius of univalence of normal circular trianglesand regular polygons [J],Complex Varibles,(1985),295--304
  • 3[3]Lehtinen, M. On the inner radius of univalency for noncircular domains[J],Ann. Acad. Sci. Fenn. Ser., AI Math.,5(1980),45--47
  • 4[4]Lehto Remarks on Nehari's theorem about the Schwarzian derivativeand schlicht functions [J], J. Analyse Math., 26(1979), 180--190
  • 5[5]Ahlfors, L. V. Complex analysis [M], Second Ediction, McGraw-Hill, New York,1966

共引文献6

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部