期刊文献+

多重分形理论在股市大幅波动中的应用 被引量:7

Application Research of Multifractal Theory in Sharp Fluctuations of Stock Market
下载PDF
导出
摘要 运用多重分形谱方法对上证指数大幅波动前后各时段高频数据的实证研究发现,不同时段其多重分形谱形状及多重分形谱参数的变化具有一定规律,即指数发生大幅波动时,其多重分形谱图形的开口变至最大,其参数值也有显著性的变化。为了验证上述实证结果的普遍性,提出运用滑动时间窗的思路,将每连续5个交易日的高频数据进行多重分形统计分析,并将其与股指波动进行对比。结果发现,在股价指数发生大幅波动的情况下,多重分形谱参数具有较明显的变化特征,这为进一步描述股票市场的复杂性规律提供了依据。 Based on the multifractal theory, this paper presents an empirical research on the data of high frequency data of Shanghai stock price index before and after fluctuating. It is found that the shape of multifractal spectrum and the parameters of multifractal spectrum follow certain law, namely, when the time series fluctuates sharply, the value of width of multifractal spectrum gets to maximum, and the changes of different time stages are pronounced. In order to verify the significance, by using the concept of sliding window, a sliding window of 240 frequency data in 5 trading days was considered in order to study stock price index fluctuation. The multifractal parameters and coefficients in each window were calculated. It is fond that when the stock price index fluctuates sharply, the parameters are clearly characterized by a strong variability. This has led to a better understanding of complex stock markets.
作者 苑莹 庄新田
出处 《系统管理学报》 北大核心 2008年第3期278-282,共5页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70371062)
关键词 大幅波动 多重分形谱参数 滑动时间窗 sharp fluctuation multifractal spectrum parameters sliding time window
  • 相关文献

参考文献11

  • 1[1]Peters E E.Chaos and order in the capital market[M].New York:John Willey &Son,1991:127-128.
  • 2[2]Mantegna R N,Stanley H E.Scaling behaviour in the dynamics of an economic index[J].Nature,1995,376(6):46-49.
  • 3[3]Wang B H,Hui P M.The distribution and scaling of fluctuations for Hang Seng index in Hong Kong stock market[J].European Physical Journal B,2001,20(4):573-579.
  • 4[4]Zhuang X T,Huang X Y,Sha Y L.Research on the fractal structure in the Chinese stock market[J].Physica A,2004,333(2):293-305.
  • 5[5]Matteo T D,Aste T,Dacorogna M M.Scaling behaviors in differently developed markets[J].Physica A,2003,324(1-2).183-188.
  • 6[6]Lilloa F,Mantegana R N.Dynamics of a financial market index after a crash[J].Physica A,2004,338(1-2):125-134.
  • 7[7]Sun X,Chen H,Wu Z,et al.Multifractal analysis of Hang Seng index in Hong Kong stock market[J].Physica A,2001,291(1-4):553-562.
  • 8[8]Sun X,Chen H,Wu Z,et al.Predictability of multifractal analysis of Hang Seng stock index in Hong Kong[J].Physica A,2001,301(4):473-482.
  • 9魏宇,黄登仕.基于多标度分形理论的金融风险测度指标研究[J].管理科学学报,2005,8(4):50-59. 被引量:39
  • 10周孝华,宋坤.高频金融时间序列的异象特征分析及应用——基于多重分形谱及其参数的研究[J].财经研究,2005,31(7):123-132. 被引量:11

二级参考文献34

  • 1施锡铨,艾克凤.股票市场风险的多重分形分析[J].统计研究,2004,21(9):33-36. 被引量:30
  • 2Mantegna R, Stanley H E. Scaling behavior in the dynamics of an economic index[J]. Nature, 1995, 376: 46-51.
  • 3Bonanno G, Lillo F, Mantegna R N. Levels of complexity in financial markets[J]. Physica A, 2001, 299: 16-27.
  • 4Mandelbrot B B. A multifractal walk down Wall Street[J]. Seientific American, 1999, 298: 70-73.
  • 5Plerou V, Gopikrishnan P, Amaral L A N, et al. Scaling of the distribution of price fluctuations of individual companies[J].Phys. Rev. E. 1999, 60: 6519-6529.
  • 6Gopikrishnan P, Plerpu V, Amaral L A N, et al. Scaling of the distributions of fluctuations of financial market indices[J]. Phys.Rev. E. 1999, 60: 5305-5316.
  • 7Schmitt F, Schertzer D, Lovejoy S. Multifractal fluctuations in finance[J]. Ira. J. Theor. Appl. Fin., 2000, 3(3): 361-364.
  • 8Bacry E, Delour J, Muzy F. Modeling financial time series using multifractal random walks[J]. Physica A, 2001, 299: 84-92.
  • 9Sun Xia, Chen Huiping, Wu Ziqin, et al. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A,2001, 291: 553-562.
  • 10Sun Xia, Chen Huiping, Yuan Yongzhuang, et al. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong[J]. Physica A, 2001, 301: 473-482.

共引文献44

同被引文献116

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部