期刊文献+

基于隐私保护的序列模式挖掘 被引量:3

Mining Sequential Patterns Based on Privacy Preserving
下载PDF
导出
摘要 基于隐私保护的数据挖掘是信息安全和知识发现相结合的产物.提出一种基于隐私保护的序列模式挖掘算法PP-SPM.算法以修改原始数据库中的敏感数据来降低受限序列模式的支持度为原则,首先构建SPAM序列树,根据一定的启发式规则,从中获得敏感序列,再进一步在原始数据库中找到敏感数据,对其做布尔操作,实现数据库的清洗.实验表明,该算法在完全保护隐私的情况下,对于D6C10T2.5S4I4数据集,当修改3.5%的原始数据后,其序列模式丢失率为2%. Data mining based on privacy preserving is the combination of information security technology and knowledge discovery technology. An algorithm of mining sequential pattern based on privacy preserving (PP-SPM) is proposed in this paper. It focuses on minimizing the support of restrictive sequential patterns by modifying the sensitive data of the original database. The tree called SPAM is built and the sensitive sequences are found from the tree firstly. Then the sensitive data is chosen from the original database and removed from the transactions by heuristic rules. The algorithm of PP-SPM not only completely protects the privacy but also hardly affects the sequential pattern mining. The experimental results show that the loss ratio of sequential patterns is 2% for the dataset of D6C10T2.5S4I4 after 3.5% data being modified.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第7期1241-1244,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(90612006)资助
关键词 隐私保护 序列模式挖掘 敏感数据 受限序列模式 privacy preserving sequential pattern mining sensitive data restrictive sequential pattern
  • 相关文献

参考文献10

  • 1Agrawal R, Srikant R. Privacy-preserving data mining[C]. Proceedings of ACM SIGMOD, 2000, 439-450.
  • 2Du W L, Zhan Z J. Using randomized response techniques for privacy-preserving data mining[C]. Proceedings of ACM SIGKDD, 2003, 24-27.
  • 3葛伟平,汪卫,周皓峰,施伯乐.基于隐私保护的分类挖掘[J].计算机研究与发展,2006,43(1):39-45. 被引量:20
  • 4Oliveira S R M, Zaiane O R. Achieving privacy preservation when sharing data for clustering[C]. Proceedings of the International Workshop on Secure Data Management in a Connected World (SDM'04), 2004, 67-82.
  • 5Evfimievski A, Srikant R, Agrawal R, et al. Privacy preserving mining of association rules [C]. Proceedings of 8th ACM SIGKDD, 2002, 217-228.
  • 6Oliveira S R M, Zaiane O R. Privacy preserving frequent itemset mining[C]. Proceedings of the IEEE ICDM Workshop on Privacy, Security, and Data Mining, 2002, 43-54.
  • 7Oliveira S R M,Zaiane O R, Saygin Y. Secure association rule sharing[C]. Proceedings of PAKDD, 2004, 74-85.
  • 8Ayres J, Flannick J, Gehrke J, et al. Sequential pattern mining using a bitmap representation [C]. Proceedings of ACM SIGKDD, 2002, 429-435.
  • 9宋世杰,胡华平,周嘉伟,金士尧.一种基于大项集重用的序列模式挖掘算法[J].计算机研究与发展,2006,43(1):68-74. 被引量:10
  • 10Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements [C3. Proceedings of Extending Database Technology (EDBTI 96), 1996, 3-17.

二级参考文献21

  • 1R.Agrawal,R.Srikant.Mining sequential patterns.ICDE 1995,Taipei,Taiwan,1995.
  • 2R.Srikant,R.Agrawal.Mining sequential patterns:Generalizations and performance improvements.EDBT 1996,Avignon,France,1996.
  • 3J.Pei,J.Han,B.Mortazavi-Asl,et al.PrefixSpan mining sequential patterns efficiently by prefix projected pattern growth.ICDE 2001,Heidelberg,Germany,2001.
  • 4M.Garofalakis,R.Rastogi,K.Shim.SPIRIT:Sequential pattern mining with regular expression constraints.In:Proc.VLDB 1999,San Francisco:Morgan Kaufmann.,1999.223~234.
  • 5C.Bettini,X.S.Wang,S.Jajodia.Mining temporal relationships with multiple granularities in time sequences.Data Engineering Bulletin,1998,21 (1):32 ~ 38.
  • 6J.Han,G.Dong,Y.Yin.Efficient mining of partial periodic patterns in time series database.ICDE 1999,Sydney,Australia,1999.
  • 7H.Mannila,H.Toivonen,A.I.Verkamo.Discovering frequent episodes in sequences.KDD 1995,Montreal,Quebec,Canada,1995.
  • 8Rakesh Agrawal.Data mining:Crossing the chasm.The 5th Int'l Conf.Knowledge Discovery in Databases and Data Mining,San Diego,California,1999.
  • 9Rakesh Agrawal,Ramakrishnan Srikant.Privacy-preserving data mining.The ACM SIGMOD Conf.Management of Data,Dallas,Texas,2000.
  • 10Yehuda Lindell,Benny Pinkas.Privacy preserving data mining.In:Advances in Cryptology-Crypto.Berlin:Springer-Verlag,2000.36~ 54.

共引文献28

同被引文献7

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部