期刊文献+

谱聚类方法研究及其在Weka中的实现 被引量:1

Spectral clustering investigated and implemented in Weka
下载PDF
导出
摘要 介绍了谱聚类方法的基本原理和算法思想,针对谱聚类方法优化问题求解的困难,分析了一种有原则的求解策略,从而给出算法的具体描述,并作为一个插件在Weka上进行了实现。对实现的系统进行了实验和测试,指出了应用中的关键问题。实验结果表明,谱聚类方法效果优于K-means方法。 The principle of spectral clustering and the thinking of algorithms are introduced, and a solving strategy is analyzed for dealing with the hard difficulty ofthe spectral clustering optimal problem. So, a detail description of spectral clustering algorithm is presented, and the algorithm is implemented in Weka as a plug-in component. Also, the key problems in application are pointed. The results of experiments show that spectral clustering has better performance than K-means clustering.
作者 李春贵 王萌
出处 《计算机工程与设计》 CSCD 北大核心 2008年第13期3384-3386,3421,共4页 Computer Engineering and Design
基金 广西自然科学基金项目(桂科自0481016) 广西教育厅2006年科研基金项目(149)
关键词 谱聚类 图分割 优化离散解 Weka接口 谱聚类类 spectral clustering graph partition optimal discretization solution Weka interface spectral clustering class
  • 相关文献

参考文献8

  • 1Shi J, Malik J. Normalized cuts and image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 2Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm [C]. Advances in Neural Information Processing Systems 14. MA: MIT Press,2001.
  • 3向世明,赵国英,崔丽,陈睿,李华.拓扑图格独立分量分析和谱聚类支持的纹理探测[J].计算机辅助设计与图形学学报,2005,17(5):935-940. 被引量:3
  • 4郭政,张田文,王琦,王海芸.基于功能模块的基因表达谱聚类分析[J].同济大学学报(自然科学版),2006,34(2):264-269. 被引量:1
  • 5高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 6Witten I H, Frank E. Data mining practical: Maehine learning tools and techniques [M], San Francisco: Morgan Kaufmann Publishers, 2005.
  • 7Ding C. A tutorial on spectral clustering [C]. Banff, Alberta, Canada: Proceedings of the Twenty-First International Conference on Maehine Learning, 2004.
  • 8UCI machine learning repository[DB/OL], http://www.ics.uci. edu/-mlearn/MLRepository.html.

二级参考文献67

  • 1Alon U,Barkai N, Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tuner and normal colon cancer tissues probed by oligonucleotide arrays[J]. Cell Biology, 1999 (96): 6745.
  • 2Ross D T, Scherf U, Eisen M B, et al. Systematic variation in gene expression patterns in human cancer cell lines[J], Nature Genet, 2000,24 (3): 227.
  • 3Alizadeh A A, Eisen M B, Eric D R, et al, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J], Nature, 2000,403 (6769): 503.
  • 4Swain P S,Elowitz M B,Siggia E D. Intrinsic and extrinsic contributions to stochastlcity in gene expression[J]. Proc Natl Acad Sci USA, 2002,99: 12795.
  • 5Elowitz M B, Levine A J, Siggia E D, et al, Stochastic gene expression in a single cell[J], Sclence,2002(297): 1183.
  • 6Tu Y, Stolovitzky G, Klein U. Quantitative noise analysis for gene expression microarray experiments[J]. Proe Natl Acad Sci USA,2002,99: 14031.
  • 7Novak J P, Sladek R, Hudson T J. Characterization of variability in large-scale gene expression data: Implications for study design[J]. Genomics,2002,79: 104.
  • 8Xing E P,Jordan J M,Karp R, Feature selection for high-dimensional genomic microarray data [A], 18th International Conference on Machine Learning [C]. San Fransisco: Morgan Kanfmann Publishers Ine, 2001. 601.
  • 9Xing E P, Karp R M. CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts[J], Bioinformatics, 2001,17(Sup 1):306.
  • 10Ihmels J, Friedlander G, Bergmann S, et al. Revealing modular organization in the yeast transcriptional network[J]. Nat Genet,2002,31:370.

共引文献31

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部