期刊文献+

光谱分析采样数据重建原始信号 被引量:2

Tracking the Process Reconstructing Original Signal with Sampled Data by Spectroscopy
下载PDF
导出
摘要 用光谱分析方法分析信号的采样与恢复。用三个改进的升余弦脉冲构造对称的限带频谱F(ω),经理论推导获得时域信号f(t)。采用梳状函数δT(t)对f(t)采样,调节T值,获得Shannon采样。应用快速傅里叶变换,计算采样的频谱Fd(ω),比较计算频谱Fd(ω)与限带频谱F(ω)的差别,讨论由采样频谱Fd(ω)重建f(t)的方法。结果发现:计算频谱Fd(ω)与限带频谱F(ω)非常相似,由采样数据可以在时域直接重建原始信号,而由频谱数据经快速逆傅里叶变换,同样能准确重建原始信号。因此,信号存储,既可以存储其采样信号,也可以存储采样信号的数字频谱。 With spectroscopy, the principle and process of sampling and reconstructing a continuous-time signal are discussed. A symmetrical frequency-finite spectrum function F(ω) is constructed with three modified rise-cosine pulses. Its corresponding time-domain signal f(t) is worked out theoretically, f(t) is sampled with a comb function δr(t). By modifying the value of T, Shannon sampling signal is obtained. With Fast Fourier Transform(FFT), the frequency spectrum Fd (ω) of the sampling signal is figured out. The calculated Fd (ω) is compared with the constructed F(ω). The processes to reconstruct f(t) with the sampling signal and its digital frequency spectrum Fd (ω) are discussed. As the result, there is little difference between the calculated Fd (ω) and the constructed F(ω). The original signal can accurately be reconstructed with the sampling data in time domain, so can with the frequency spectrum Fd(ω) by FFT. As soon as signal storage is concerned, we can store the sampling data or its digital frequency spectrum.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第7期1492-1495,共4页 Spectroscopy and Spectral Analysis
基金 中国博士后科学基金项目(20060400930) 江苏省博士后基金项目(0602040B)资助
关键词 快速傅里叶变换 采样定理 恢复 频域 数字信号处理 Fast fourier transform Sampling theorem Reconstruction Frequency domain Digital signal processing
  • 相关文献

参考文献7

  • 1Alan V Oppenheim, Alan S Willsky, Hamid Nawab S. Signals and Systems(Second edition). Beijing: Publishing House of Electronics Industry, 2003.
  • 2Andrew S. Tanenbaum ed, XIONG Gui-xi, et al. Computer Network. Beijing: Tsinghua University Press, 1998.
  • 3宋一中,胡国英,贺安之.简单自相关代数迭代重建算法[J].光谱学与光谱分析,2006,26(12):2364-2367. 被引量:6
  • 4宋一中,孙涛,胡国英,贺安之.光谱法分析迭代重建过程中的滤波[J].光谱学与光谱分析,2006,26(8):1411-1415. 被引量:5
  • 5宋一中,阳向军,刘学梅,贺安之.光谱法分析场频对重建精度的影响[J].光谱学与光谱分析,2006,26(10):1918-1922. 被引量:4
  • 6Jerry A J. The Shannon Sampling Theorem-Its Various Extension and Applications: a Tutorial Review, Proe. IEEE, 1977, 65: 1565.
  • 7CHENG Pei-qing(程佩青).Digital Signal Precessing Tutorial(数字信号处理教程).Beijing:Tsmghua University Press(北京:清华大学出版社),2003.

二级参考文献25

  • 1Herman G T. Image Reconstruction from Projections: the Fundamentals of Computerized Tomography. New York: Academic Press,1980.
  • 2Herman G T. ed. Translated by YAN Hong-fan, et al(严洪范,等译).Image Reconstruction from Projections-The Fundamentals of Computerized Tomography(由投影重建图象—CT的理论基础).Beijing: Science Presst(北京:科学出版社),1985.92.
  • 3ZHUANG Tian-ge(庄天戈).Principle and Algorithm of Computerized Tomography(CT原理与算法).Shanghai:Shanghai Jiaotong University Press(上海:上海交通大学出版社),1992-4..
  • 4WANGZhen-dong SHIMing-quan LIZhen-hua (王振东 石明全 李振华).光学学报,2002,22(51):556-556.
  • 5SONGYi-zhong LIZun-ying ZHURui-fu (宋一中 李尊营 朱瑞富).光谱学与光谱分析,2002,22(4):545-545.
  • 6SONG Yi-zhong, LI Zun-ying, ZHU Rui-fu, et al(宋一中,李尊营,朱瑞富,等).光谱学与光谱分析,2002,22(4):545.
  • 7LIZun-ying LIUFu-yi (李尊营 刘复义).光谱学与光谱分析,2004,24(2):132-132.
  • 8SONGYi-zhong HEAn-zhi(宋一中 贺安之).光谱学与光谱分析,2004,24(1):29-29.
  • 9YAOWei LIZhen-hua HEAn-zhi(姚卫 李振华 贺安之).光学学报,2000,20(5):684-684.
  • 10Griem H R.Plasma Spectroscopy.New York:McGraw-Hill,1964.267.

共引文献6

同被引文献23

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部