期刊文献+

一种基于免疫遗传算法的数据挖掘方法 被引量:1

Application of Genetic Programming on Data Mining
下载PDF
导出
摘要 提出了一种基于免疫遗传算法的数据挖掘算法,该算法在简单的遗传算法基础上引入免疫算子解决了遗传算法中的早熟现象。这种算法具有很好的鲁棒性和隐含并行性,能快速、有效的进行全局优化搜索。特别适用于大规模、海量数据库的挖掘。 A method of data mining is proposed based on immune genetic algorithm. Based on the simple genetic algorithm,This method intruded immunity operator to solve the problem of premature convergence of genetic algorithm. This method can be more quickly and efficiently searched in the whole global, and extremely used for the mining association rules to large-scale data base.
作者 颜富强 吴昊
出处 《科学技术与工程》 2008年第14期3966-3969,3978,共5页 Science Technology and Engineering
关键词 免疫遗传算法 数据挖掘 早熟 客户关系管 immune genetic algorithm data mining premature convergence customer relationship management
  • 相关文献

参考文献10

  • 1[2]Agrawal R,Srikant R.Fst algorithms for mining association rules.In:Proc of the 20th VLDB Conf S antiago,Chile,1994:487-489
  • 2[3]Park J,Chen M,Yu P.An effective hash-based algorithm for mining association rules.In:Proc 1995 ACM-SIGMOD,Int:Conf Management of Data,San Jose,CA,1995;05:175-186
  • 3[4]Zaki M J.Parallel and distributed association mining:a survey.IEEE Concurrency,Special Issue on Parallel Mechanisms for Data Mining,1999;7(4):14-25
  • 4[5]Brin S,Motwani R,Ullnan J D,et al.Dynamic itemset counting and implication rules for market basket data.In:Proc 1997ACM-SIGMOD Int Conf Management of data,Tucson,Arizona 1996;05:225-264
  • 5[6]Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation.In:ACM-SIGMOD,Dallas,2000
  • 6蒋晶,刘同明.基于数据库信息构建贝叶斯网络的免疫遗传算法[J].计算机应用,2005,25(B12):188-189. 被引量:2
  • 7[8]Cai Y,Cercone N,Han J.Attribute-oriented induction in relational databases,knowledgediscovery in databases.Cambridge,MA:MIT Press,1991
  • 8[9]Han J,Fu Y.Attribute-oriented induction in data mining.advances in knowledge discovery and datamining.Cambridge,MA:MIT Press,1996
  • 9[10]Baker J E.Adaptive selection methods for genetic algorithms.Lawrence Erlbaum Associates.International Conference on Genetic Algorithms and Their Applications,Pittsburgh,PA,1985
  • 10[11]Holland J H.Adaptation in natural and artificial systems:an introductory analysis with aDplications to biology,control,and artificial intelligence.Cambridge,MA:The MIT Press,1989

二级参考文献6

  • 1EIBEN AE, CEES HM, VAN K. Diagonal crossover in genetic algorithms for numerical optimization[ J]. Journal on Control and Cybernetics, 1997, 26(3) :447 -466.
  • 2KOCKA T, CASTELO R. Improved learning of Bayesian network[ A]. Breese J, Koller D. Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference(UAI'2001) [ C]. San Francisco. US: M Kanfmann. 2001. 269 -276.
  • 3HECKERMAN D, GEIGER D, CHICKERING DM. Learning Bayesian networks: the combination of knowledge and Statistical data[ J].Machine learning, 1995,20( 1 - 3) : 197 - 243.
  • 4COOPER G, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[ J]. machine learning, 1992, (9) :309 - 347.
  • 5LARRAGANA P, POZA M. Structure learning of Bayesian networks by genetic algorithms[ A]. Book H H. Studies in Classfication, Data Analysis, and Knowledge Organization[ C]. Heidelberg, Germany:Springer-Verlag, 1994. 300 - 306.
  • 6SEWELL W, SHAH V. Social class, parental encouragement, and educational aspirations[ J]. American Journal of Sociology, 1968,73:559 - 572.

共引文献1

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部