期刊文献+

番茄细菌性斑点病菌无毒基因研究进展 被引量:3

Advances in the avirulence genes in Pseudomonas syringae pv. tomato
下载PDF
导出
摘要 番茄细菌性斑点病是影响番茄产量和品质的重要病害,Pseudomonas syringaepv.tomato(Pst)为其病原菌,其与番茄的互作系统是研究植物抗感病机理的典型模式系统。Pst存在2种无毒基因:avrPto和avrPtoB,它们编码的蛋白质均能与番茄抗性基因Pto编码的Ser-Thr蛋白激酶互作,符合Flor"基因对基因"学说。AvrPto和AvrPtoB在表达Pto的抗性植物中,与Pto互作,表现无毒功能,引发植物防御反应;而在缺失Pto的感病植物中,它们具有毒性,促进细菌的生长。本文综述了番茄细菌性斑点病菌无毒基因avrPto及avrPtoB的结构特点及其功能,这有助于了解病原物与植物的互作机制,对认识植物的感病性、抗病性以及植物防御反应都具有重要意义。 The tomato bacterial speak disease is the main disease that can affect the quantity and quality of tomatoes. Pseudomonas syringae pv. tomato (Pst) is the pathogen of bacterial speck disease in the tomato and Arabidopsis. The interaction between P. s. pv. tomato and tomato has been established as a typical model system for studying plantpathogen interaction. There are two types of avirulence genes in P. s. pv. tomato, avrPto and avrPtoB. Their encoded proteins can separately and specifically interact with the resistance protein Pto of tomato, a Ser-Thr kinase protein. It matches with Flor's hypothesis of "gene for gene" reaction. Pst elicits immunity-associated programmed cell death (PCD) when inoculated on tomato plants carrying Pto. However, in tomato plants lacking Pto, they function to suppress immunity in plants and promote bacterial growth. This paper reviews the tomato bacterial speck disease and the avirulence genes, avrPto and avrPtoB, and their construction characteristics and functions. It is helpful to understand the mechanisms of plant-pathogen interaction, since it will contribute to understanding plant susceptibility, resistance as well as plant defense responses.
出处 《植物保护》 CAS CSCD 北大核心 2008年第4期12-18,共7页 Plant Protection
基金 北京市自然科学基金(6012017)
关键词 无毒基因 抗病基因 植物防御反应 过敏性坏死反应 avirulence gene resistence gene plant defense response hypersensitive response
  • 相关文献

参考文献38

  • 1吕晓梅,许向阳,李景富.番茄叶霉菌及其抗病育种的研究进展[J].东北农业大学学报,2002,33(4):396-406. 被引量:15
  • 2赵廷昌.番茄细菌性斑点病研究进展[C]//植物病理学研究进展,北京:中国农业科技出版社,2001:271-275.
  • 3Hirano S S, Upper C D. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epi phyte[J]. Microhiol Mol Biol Rev, 2000, 64(3) : 624- 653.
  • 4Buell C R, Joardar V, Lindeberg M, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000[J]. Proc Natl Acad Sci USA, 2003, 100(18): 10181-10186.
  • 5Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004, 428(6984): 764-767.
  • 6Zeidler D, Zahringer U, Gerber I, et al. Innate immunity in Arabidopsis thallana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes[J]. Proc Natl Acad Sci USA,2004,101(44) :15811 - 15816.
  • 7Nurnberger T, Brunner F, Kemmerling B, et al. Innate immunity in plants and animals: striking similarities and obvious differenees[J]. Immunol Rev, 2004, 198: 249-266.
  • 8Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins[J]. Annu Rev Plant Biol, 2003, 54: 23-61.
  • 9Greenberg J T, Yao N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cell Microbiol, 2004, 6(3): 201-211.
  • 10Abramovitch R B, Martin G B. Strategies used by bacterial pathogens to suppress plant defenses[J]. Curr Opin Plant Biol, 2004, 7(4): 356-364.

二级参考文献196

共引文献50

同被引文献85

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部