期刊文献+

基于各向异性扩散方程的并行图像去噪研究 被引量:1

Parallel image denoising research based on anisotropic diffusion equation
下载PDF
导出
摘要 各向异性扩散方程是一种非线性PDE模型,在图像去噪中,通过非线性扩散因子来滤除噪声,同时能保留原有的边缘和纹理。但是当图像很大时,求解PDE的差分运算量将很大,满足不了实时系统的要求。针对该模型,在MPI并行编程环境下,利用图像像素的独立性和PDE求解的并发性,采用并行方式对图像去噪,在保证去噪性能的同时,极大地降低计算时间。 Anisotropic diffusion equation is a nonlinear image processing methods by using Partial Differential Equation(PDE), with the nonlinear diffusion coefficient,it can restrain noise fairly good,reserve original edge and texture,especially for image denoise.However,the computing size of the PDE is huge when the image pixel is big and the time cost of computing is important for the real time system.For the anisotropic diffusion equation in the MPI based environment,parallel computing can reduce the computing time greatly by using independence of image pixel and subsequent of PDE while keeping the good performance of image deniosing.
作者 程群 田有先
出处 《计算机工程与应用》 CSCD 北大核心 2008年第22期186-188,共3页 Computer Engineering and Applications
基金 重庆市科委基金项目No.CST2005BB0061~~
关键词 各向异性扩散方程 并行计算 图像去噪 MPI anisotropic diffusion equation parallel computing image denoise MPI
  • 相关文献

参考文献7

  • 1Black M J,Sapiro G.Marimont D H,et al.Robust anisotropic diffusion[J].IEEE Transactions on Image Processing, 1998,7(3):421-432.
  • 2Carte F,lions P L,Morel J,et al.lmage selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis, 1992,29( 1 ): 182-193.
  • 3Gonzalez,Richard E.Woods.数字图像处理[M].北京:电子工业出版社,2003:148-151.
  • 4张宣,陈刚.基于偏微分方程的图像处理[M].北京:高等教育出版社,2004.
  • 5Perona P,Malik J.Scale space and edge erection using anisotropic diffusion[J].IEEE Trans on PAMI, 1990, 12 ( 7 ) : 629-639.
  • 6邵文泽,韦志辉.各向异性扩散与M-估计的比较研究[J].计算机工程与应用,2006,42(31):43-45. 被引量:5
  • 7吕涛,石济民,林振宝,区域分解算法[M].北京:科学出版社,1999:269-299

二级参考文献9

  • 1HUBER P J.Robust estimation of a location parameter[J].Ann Math statistics,1964(35):73-101.
  • 2HUBER P J.Robust statistics[M].New Yoke:Wiley,1981.
  • 3HAMPEL F R,ROUSSEEUW P J,BROCHETTES E M,et al.Robust statistics:the approach based on influence functions[M].New Yoke:Wiley,1986.
  • 4BLACK M,RANGARAJAN A.On the unification of line processes,outlier rejection,and robust statistics with applications in early vision[J].International Journal of Computer Vision,1996(19):57-92.
  • 5PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on PAMI,1990,12(7):629-639.
  • 6AUBERT G,KORNPROBST P.Mathematical problems in image processing:partial differential equations and the calculus of variations[M]//Applied Mathematical Sciences.[S.l.]:Springer-Verlag,2001:147.
  • 7BLACK M J,SAPIRO G,MARIMONT D H,et al.Robust anisotropic diffusion[J].IEEE Transactions on Image Processing,1998,7(3):421-432.
  • 8CHARBONNIER P,BLANC-FERAUD L,AUBERT G,et al.Deterministic edge-preserving regularization in computed imaging[J].IEEE Transactions on Image Processing,1997,6(2):298-311.
  • 9SAPIRO G.Geometric partial differential equations and image analysis[M].[S.l.]:Cambridge University Press,2001.

共引文献41

同被引文献7

  • 1蒋先刚.基于各向异性扩散的图像平滑及在三维重构预处理中的应用[J].计算机应用,2007,27(1):249-251. 被引量:6
  • 2Ceccarelli M,De Simone V,Murli A.Well-posed anisotropic diffusion for.image denoising[J].IEEE Proceedings VISP,2002, 149(4):244-252.
  • 3Perona P,Malik J. Scale space and edge detection using anisotropic diffusion[J].IEEE Transon PAMI,1990,12(7):629-639.
  • 4Yongjian Yu, Acton S.T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002,11 (11 ): 1260-1270.
  • 5NVIDIA CUDA Compute Unified Device Architecture Programming Guide[Z/OL].(2008-07-06)[2009-07-01].http://cuda.csdn.net/upload/bczn2.0.doc.
  • 6Catte F,lions P L,Morel J.lmage selective smoothing and edge detection by nonlinear diffusion[J]. SEAM Journal on Numerical Analysis, 1992,29 ( 1 ): 182 - 193.
  • 7S. Tabik,E.M. Garzon, I. Garcla. Implementation of Anisotropic Nonlinear Diffusion for Filtering 3D Images in Structural Biology on SMP Clusters[J].Parallel Computing,2006,33(11):727-734.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部