期刊文献+

高氯酸[四氨·双(5-硝基四唑)]合钴(Ⅲ)的热分解性能 被引量:5

Thermal Decomposition Property of BNCP
下载PDF
导出
摘要 利用DSC法研究了高氯酸[四氨.双(5-硝基四唑)]合钴(Ⅲ)(BNCP)的热分解性能,并与苯并三氧化呋咱(BTF)和超细六硝基茋(HNS-Ⅳ)的热分解性能进行了比较,用Kissinger法和Ozawa法得到了BNCP、BTF、HNS-Ⅳ热分解反应动力学参数。在10℃/min的升温速率下,BNCP的分解峰温为289.6℃,比BTF高25.4℃,其分解热焓在3者中最大。VST、TG研究表明,BNCP在100℃以下具有良好的热安定性。Kissinger法得到的BNCP分解表观活化能为178.3kJ/mol,比BTF和HNS-Ⅳ分别低46.4kJ/mol和43.1kJ/mol;而用Ozawa法得到的BNCP分解表观活化能为187.5kJ/mol,比BTF和HNS-Ⅳ分别低约33.8、32.8kJ/mol。 The thermal decomposition property of bis-(5-nitro-2H-tetrazolato-N^2) tetraamine cobalt (Ⅲ) perchorate (BNCP) was investigated by DSC and compared with those of BTF and HNS-Ⅳ. The kinetic parameters of thermal decomposition of BNCP, BTF and HNS-Ⅳ were calculated by Kissinger's method and Ozawa's method. At 10℃/min BNCP has an exothermic peak on the DSC curve at 289. 6 ℃, which is 25.4℃ larger than that of BTF, BNCP has the largest decomposition enthalpy compared with BNCP and BTF. BNCP is thermally stable under 100 ℃, which is confirmed by VST and TG. The apparent activation energy of thermal decomposition of BNCP by Kissinger's method is 178.3kJ/mol, which is 46.4kJ/mol less than that of BTF and 43.1 kJ/mol less than that of HNS- Ⅳ , and by Ozawa's method is 187.5kJ/mol, being less about 33.8kJ/mol and 32.8 kJ/mol than those of BTF and HNS- Ⅳ.
出处 《火炸药学报》 EI CAS CSCD 2008年第3期64-66,共3页 Chinese Journal of Explosives & Propellants
关键词 物理化学 BNCP BTF HNS-Ⅳ DSC VST 热分解 动力学参数 physical chemistry BNCP BTF HNS- Ⅳ DSC VST thermal decomposition kinetic parameters
  • 相关文献

参考文献7

二级参考文献17

  • 1张蕊 陈朗 冯长根.武器弹药热烤实验的研究进展[A]..中国兵工学会第十一届火工品学术年会论文集[c].,2001.443—451.
  • 2[1]Yi J D, Sun Q L. Synthesis and properties of 2,5,7,9-tetranitro-2,5,7,9-tetrazabicyclo [4,3,0] nonane [J]. Explosives and propellants, 1987, (4): 1-4.
  • 3[2]Dong H S, Hu R Z, Yao P, et al. Collection of Thermospectrum of Energetic Materials [M]. Beijing: National Defence Industry Press, 2001, 132(in Chinese).
  • 4[3]Kissinger H E. Reaction kinetics on differential thermal analysis[J]. Anal Chem, 1957, 29 (11):1 702-1 706.
  • 5[4]Ozawa T. A new method of analyzing thermogravimatric data [J]. Bull Chem Soc Jpn, 1965, 38(1):1 881-1 886.
  • 6[5]Hu R Z, Yang Z Q, Liang Y J. The determination of the most probable mechanism function and three kinetic parameters of exothermic decomposition reaction of energetic materials by a single non-isothermal DSC curve [J]. Thermochim Acta, 1988,123:135-151.
  • 7[6]Hu R Z. Shi Q Z., Thermal Analysis Kinetics(M). Beijing: Science Press,2001,67(in Chinese).
  • 8[7]Zhang T L, Hu R Z, Xie Y, et al. The estimation of critical temperature of thermal explosion for energetic materials using non-isothermal DSC [J]. Thermochim Acta, 1994, 244:171-176.
  • 9Kimura J, Kubota N.The thermal decomposition history of HMX[J]. Prop Explos, 1980,(5):1-8.
  • 10Brill T B, Gongwer P E,Williams G K. Thermal decomposition of energetic materials 66. Kinetic compensation effects in HMX,RDX, and NTO[J].J Phys Chem, 1994,98: 12242-12247.

共引文献49

同被引文献138

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部