期刊文献+

φ混合序列自正则加权和的中心极限定理 被引量:2

Central Limit Theorem for Self-normalized Weighted Sums of φ-Mixing Sequences
下载PDF
导出
摘要 设{Xn,n≥1}为一严平稳φ混合随机变量序列,EX=0,V2n=∑ni=1Xi2,{an,i,1≤i≤n,n≥1}为一实数阵列,Sn=∑ni=1an,iXi.利用随机变量阵列的弱收敛定理,在较一般的条件下,证明了自正则加权和{Sn/Vn,n≥1}的中心极限定理,改进并推广了已有混合序列自正则化中心极限定理的相关结果. Let {Xn,n≥1}be a sequence of strictly stationary φ-mixing random variables with EX=0,V^2n=∑^n i=1 X^2i ,{an,i 1≤i≤n,n≥1}be an array of real numbers with Sn=∑^n i=1 an,i Xi.Using the weak convergence theorem of the arrays, under general conditions, we obtained the central limit theorem for self-normalized weighted sum of {Sn/Vn,n≥1}.The results about this scope are improved and extended.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第4期643-648,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10571073)
关键词 Φ混合序列 自正则 加权和 中心极限定理 φ-mixing sequence self-normalized weighted sums central limit theorem
  • 相关文献

参考文献10

  • 1Griffin P S, Kuelbs J D. Self-normalized Laws of the Iterated Logarithm [J]. Ann Probab, 1989, 17(4) : 1571-1601.
  • 2SHAO Qi-man. Self-normalized Large Deviations [J]. Ann Probab, 1997, 25(1) : 285-328.
  • 3Gine E, Gotze F, Mason D M. When Is the Student t-Statistic Asymptotically Standard Normal[J]. Ann Probab, 1997, 25(3) : 1514-1531.
  • 4JING Bing-yi, SHAO Qi-man, WANG Qi-ying. Self-normalized Cramer-type Large Deviations for Independent Random Variables [J]. Ann Probab, 2003, 31(4): 2167-2215.
  • 5Csorgo M, Szyszkowicz B, Wang Q Y. Donsker's Theorem for Self-normalized Partial Sums Processes [ J ]. Ann Probab, 2003, 31 (3) : 1228-1240.
  • 6Balan R M, Kulik R. Self-normalized Weak Invariance Principle for Mixing Sequence [ R ]. Ottawa: Lab Reas Probab Stat Univ Ottawa-Caroleton Univ, 2005.
  • 7PANG Tian-xiao, LIN Zheng-yan, Hwang K S. Asymptotics for Self-normalized Random Products of Sums of i. i. d. Random Variables [J]. J Math Anal Appl, 2007, 334(2) : 1246-1259.
  • 8Liu W D, Lin Z Y. Asymptotics for Self-normalized Random Products of Sums for Mixing Sequences [ J ]. Stochastic Analysis and Applications, 2007, 25: 293-315.
  • 9林正炎,陆传荣.混合相依变量的极限理论[M].北京:科学出版社,1997.
  • 10Peligrad M, Utev S. Central Limit Theorem for Linear Processes [J]. Ann Probab, 1997, 25( 1 ) : 443-456.

共引文献1

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部