期刊文献+

S-系的余直积

The Coproduct of S-acts
下载PDF
导出
摘要 在模范畴中一簇左R-模的余直积即是它们直和,而在中心S-范畴中,余直各表现为零直并.考虑到模范畴与S-系范畴之间的联系,本章首先给出了中心S-系范畴中余直积的一个充要条件,进而利用一般S-系范畴和一元S-系的不交并含零元这一性质,将该充要条件推广到了一般S-系范畴中(定理2.5),成功的给出余直积的一个具体刻画. Let So - Act be the category of all central S - acts and S - Act the category of all S - acts. Because the forms of coproduct in S - Act and So - Act are different, not all the results which hold in So - Act is also true in general S - Act. In So - Act, we can think of 0 - direct union as the coproduct. This paper gives an equivalent condition for a S - act the coproduct of a family of S - acts. Since the disjoint of a family of S - acts is their coproduct, and the coproduct of any S - act and one element S - act contains zero element, we generalize some results in So - Act to ones in S- Act.
出处 《泰山学院学报》 2008年第3期17-20,共4页 Journal of Taishan University
关键词 S-系 S-同态 零同态 余直积 张量积 S - act S - morphism zero morphism coproduct tensor product
  • 相关文献

参考文献4

  • 1陈裕群,岑嘉评.Projective and indecomposable S-acts[J].Science China Mathematics,1999,42(6):593-599. 被引量:3
  • 2Yuqun Chen. Projective S-acts and Exact Functors[J] 2000,Algebra Colloquium(1):113~120
  • 3Chen Yuqun,K. P. Shum. Projective and indecomposableS-acts[J] 1989,Science in China Series A: Mathematics(6):593~599
  • 4Ulrich Knauer. Projectivity of acts and morita equivalence of monoids[J] 1971,Semigroup Forum(1):359~370

共引文献2

  • 1张霞,王燕鸣.C-内射S-系[J].中山大学学报(自然科学版),2006,45(4):6-10.
  • 2Yu Qun CHEN Department of Mathematics,South China Normal University,Guangzhou 510631,P.R.China E-mail:yqchen@scnu.edu.cnK.P.SHUM Department of Mathematics,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong E-mail:kpshum@math.cuhk.edu.hk.Morita Equivalence for Factorisable Semigroups[J].Acta Mathematica Sinica,English Series,2001,17(3):437-454. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部