期刊文献+

基于潜周期模型的两种群食饵-捕食者模型的参数估计 被引量:5

Parameter Estimation in Two Species Predator-prey Equations by Using Hidden Periodic Model
下载PDF
导出
摘要 给出了一种两种群食饵-捕食者模型参数估计的两阶段方法。考虑到食饵-捕食者模型解的周期性,首先用潜周期模型来逼近观测序列,然后将模型参数的非线性最小二乘估计问题转化为一个线性最小二乘估计。两阶段法求解过程中不需要数值求解微分方程,具有计算方便,能同时得出参数的估计值及其置信区间的优点,改进了现有算法只能得到参数点估计的不足。算例结果表明,该算法误差很小,比现有算法的精度大大提高。 In this paper, the method of Hidden Periodic Model was used to study the parameters estimation in two species predator-prey model. Since the two species predator-prey model has periodic solutions, the method of Hidden Periodic Model was first used to approximate the original data. And then the non-linear least square was transformed into a simple least square method. This estimating method was called as two-stage estimation(TSE).TSE does not need numerical solution of the ODE and is easy to carried out. Especially, we may have the interval estimation of the parameters that modified the existing algorithm. The simulation result showed that the errors were much smaller than the published study(eg, see[4] ).
机构地区 南昌大学数学系
出处 《南昌大学学报(工科版)》 CAS 2008年第2期134-137,共4页 Journal of Nanchang University(Engineering & Technology)
基金 江西省自然科学基金资助项目(2007GZS2398) 南昌大学研究生创新专项资金资助
关键词 潜周期模型 参数估计 食饵-捕食者模型 hidden periodic model estimation of parameters predator-prey model
  • 相关文献

参考文献10

  • 1Fussmann G F, Ellner S P, Shertzer K W, et al. Crossing the hopf Bifurcation in a Live Predator-prey system [ J ]. Science,2000,290:1 358- 1 360.
  • 2Cao Jiguo. Generalized Profiling Method and the Applications to Adaptive Penalized Smoothing, Generalized Semiparametric Additive Models and Estimating Differential Equations [ D]. Montreal : McGill University,2006.
  • 3Ramsay J O, Hooker G, Cao J, et al. Estimating Differential Equations[ J]. Journal of the Royal Statistical Society, Series B,2007,69 (5) :741 - 796
  • 4Jerome M B Walmag, Eric J M Delhez. A Trust-region Method Applied to Parameter Identifi-cation of a Simple Prey-predator model [ J ]. Applied Mathematical Modeling,2005,29:289 - 307.
  • 5陈务深,戴沨,甘泉.确定高精度参数问题的评注[J].数学的实践与认识,2007,37(14):90-94. 被引量:1
  • 6Himmelblau D, Jones C, Bischoff K B. Determination of rate Constants for Complex Kinetics Models [ J ]. Industrial Engineering Chemistry Fundamentals, 1967,6(2 ) : 539 - 552.
  • 7Bock H G. Recent advances in Parameter Identification Techniques for ode. [ M ]//Deuflhard P, Harrier E. Numerical Treatment of Inverse Problems in Differential and Integral Equations. Basel : Birkhanser, 1983:95 - 121.
  • 8姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2004.
  • 9何书元.应用时间序列分析[M].北京:北京大学出版社,2005.
  • 10Brockwell P J, Davis R A. Time Series: Theory and Method[ M ]. New York: Springer-Verlag, 1991 : 324 - 332.

二级参考文献7

  • 1孙振冰.具有空间结构的Lotka-Volterra模型的参数反演方法[J].大地测量与地球动力学,2004,24(4):35-38. 被引量:1
  • 2刘来福 曾文艺.数学模型与数学建模[M].北京:北京师范大学出版社,2002..
  • 3马知恩.种群生态学的数学建模与研究[M].安徽:安徽教育出版社,2000..
  • 4袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2003..
  • 5朱国钦.王天波.误差理论及其在石油测井中的应用[M].北京:石油工业出版社,2000,9,第一版.
  • 6D M 贝茨等著.韦博成等译.非线性回归分析及其应用[M].北京:中国统计出版社,1997.
  • 7USER'S Reference Guide for ODRPACK Version 2.01 Software for Weighted Orthogonal Distallce Regression, Paul T. Boggs, Richard H. Byrd, Janet E. Rogers and Robert B. Schnabel June,1992.

共引文献57

同被引文献40

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部