期刊文献+

基于博弈论的汽车耐撞性多目标优化设计 被引量:5

Vehicle Crashworthiness Multi-objective Optimization Based on Game Theory
下载PDF
导出
摘要 提出一种基于博弈论的耐撞性多目标优化设计方法,用非合作博弈处理多个目标之间的冲突,以达到纳什均衡状态的解作为最优解。并以某新车型为例,应用均匀设计和移动最小二乘法构建了代理模型,进行了面向US-NCAP法规的结构耐撞性优化设计,取得了比传统的线性加权法更好的优化效果。 A new method for vehicle crashworthiness multi-objective optimization is proposed based on game theory. Non-cooperative game theory is used to deal with the conflict among multiple objectives, and the Nash equilibrium solution is taken as the optimum one. Taking a new car model as an example, the uniform design and the moving least square method are applied to setting up a meta-model, and aiming at the requirements of US-NCAP regulation, a structure crashworthiness optimization is linear weighted method. performed, achieving a better effect than that by traditional
出处 《汽车工程》 EI CSCD 北大核心 2008年第7期553-556,共4页 Automotive Engineering
基金 国家"863"高科技项目(2007AA04Z183)资助。
关键词 多目标优化设计 耐撞性 博弈论 非合作博弈 纳什均衡 multi-objective optimization crashworthiness game theory non-cooperative game nash equilibrium
  • 相关文献

参考文献9

  • 1Srinivas Kodiyalam S, Yang R J, Gu L, et al. Large-Scale, Multidisciplinary Design Optimization of a Vehicle System in a Scalable, High Performance Computing Environment[ C]. DETC2001/DAC- 21082, Proceedings of ASME 2001 Design Engineering Technical Conferences and the Computers and Information in Engineering Conferences, Pittsburgh, Pennsylvania, September 9 - 12,2001.
  • 2Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness Design Optimization Using Successive Response Surface Approximations [ J ]. Computational Mechanics,2002,29:409 - 421.
  • 3Yang R J, Gu L, Tho C H, et al. Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing[ C]. AIAA-2001 - 1273, Proceedings of 42nd AIAA/ASME/ASCE, Seattle, April 16 - 19,2001.
  • 4王江峰,伍贻兆,Periaux J.分散式多点优化算法及其在多段翼型气动优化中的应用(英文)[J].宇航学报,2003,24(1):71-77. 被引量:22
  • 5Briceno Simon I, Mavris Dimitri N. Applications of Game Theory in a Systems Design Approach To Strategic Engine Selection [ C ]. 25th International Congress of the Aeronautical Sciences. Hamburg, Germany, Sep. 3 - 8,2006.
  • 6Lancaster P, Salkauskas K. Surfaces Generated by Moving Least Squares Methods [ J ]. Mathematics of Computation, 1981,37 (155) :141 - 158.
  • 7Belytschko T, Lu Y Y, Gu L. Element Free Galerkin Methods [ J ]. International Journal for Numerical Methods in Engineering, 1994(37) :229 -256.
  • 8Yang R J, Gu L, Liaw L, et al. Approximations for Safety Optimization of Large Systems [ C ]. DETC2000/DAC-14245, Proceedings of ASME Design Engineering Technical Conferences, Baltimore, Maryland, September 10 - 13,2000.
  • 9袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2003..

二级参考文献10

  • 1[6]Lewontin R C. Evolution and the Theory of Games[J].Theoretical Biology,1961,1:382-403
  • 2[7]Nash J F. Non-cooperative Games[J].Annals of Mathematics,1951,154-289
  • 3[8]Loridan P,Morgan J A.Theoretical Approximation Scheme for Stackelberg Games[J].Optimization Theory and Applications,1989,61(1):95-110
  • 4[9]Periaux J. Calcul des Parametres de Couche Limite Suivant la Ligne de Glissement en Laminaire et Turbulent[R].Technical Report,note AP 4173,1970
  • 5[10]Wang Jiangfeng. Optimisation Distribuée Multicritère par Algorithmes Génétiques et Théorie des Jeux & Application à la Simulation Numérique de Problèmes d'Hypersustentation en Aérodynamique[D].Thèse 3eme cycle Univ.Paris 6,France 2001
  • 6[1]Holland J H. Adaptation in Natural and Artificial System[M].University of Michigan Press,Ann Arbor,1975
  • 7[2]Goldberg D E. Genetic Algorithms in Search,Optimization and Machine Learning[J].Addison-Wesley,Reading,Mass,1989
  • 8[3]Mitchel M. An Introduction to Genetic Algorithms[M].Mit press,1997
  • 9[4]Michalewicz Z. Genetic Algorithms+Data Structure=Evolutionary Programs[C].Artificial intelligence.Springer-Verlag,New York,1992
  • 10[5]Mckinsey J C C. Introduction to the Theory of Games[C].RAND Series,1952

共引文献62

同被引文献44

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部