期刊文献+

基于NARX网络模型的挖掘机液压系统故障检测 被引量:9

Fault Detection of Excavator Hydraulic System Based on Nonlinear Auto-regression with Extra Inputs Model
下载PDF
导出
摘要 提出了一种针对挖掘机液压系统的非线性有源自回归(nonlinear auto-regressive with extrainputs,NARX)网络模型的故障检测方法。NARX网络模型是一种将有源自回归(auto-regressivewith extra inputs,ARX)模型与神经网络相结合的系统建模方法,具有很强的非线性辨识能力。该方法首先选取合理的网络模型结构,并根据AIC准则确定最佳模型阶数;使用正常状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(sequential probability ratiotest,SPRT)对NARX辨识模型的残差进行假设检验,检测系统的故障状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于挖掘机液压系统。 A fault detection approach of excavator hydraulic system based on nonlinear auto-regressive with extra inputs (NARX) network model is proposed. As a combination of auto-regressive with extra inputs (ARX) and neural networks, NARX network is suitable for identifying nonlinear systems. Firstly, an appropriate network structure is chosen and the optimal orders of the model are obtained according to Akaike' s information criterion (AIC). Then, a NARX network model is trained to develop an identification model. Finally, sequential probability ratio test (SPRT) is performed for a hypothesis test of the model residual for detecting the system faults. Experimental results show that the proposed approach based on NARX network model is effective for fault detection of an excavator hydraulic system.
出处 《机械科学与技术》 CSCD 北大核心 2008年第7期937-940,944,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家"863"高技术研究发展计划项目(2003AA430200)资助
关键词 液压系统 挖掘机 故障诊断 非线性有源回归网络模型 序贯概率比检验 hydraulic system hydraulic excavator fauh diagnosis nonlinear auto-regressive with extra inputs sequential probability ratio test
  • 相关文献

参考文献7

  • 1Ljung L. System Identification: Theory for the User(2nd Edition)[ M]. Tsinghua University Press, Prentice Hall PTR, 2002
  • 2蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 3周曲珠,芮延年.模糊理论在液压系统故障诊断中的应用[J].机械科学与技术,2006,25(12):1515-1518. 被引量:5
  • 4SIMon HYKIN.神经网络原理[M].叶世伟,史忠植译.北京:机械工业出版社,2004.
  • 5Wong C X, Worden K. Generalised NARX shunting neural network modelling of friction[ J]. Mechanical Systems and Signal Processing, 2007,21 ( 1 ):553 -572
  • 6苏浩秦,宋述杰,邓建华.基于限制最小二乘估计的飞机舵面故障诊断方法[J].机械科学与技术,2005,24(9):1033-1035. 被引量:5
  • 7Skoundrianos E N, Tzafestas S G. Finding fault-fault diagnosis on the wheels of a mobile robot using local model neural networks[J].IEEE Robotics & Automation Magazine, 2004,9:83 - 90

二级参考文献10

  • 1王光远.论综合评判几种数学模型的实质及应用[J].模糊数学,1984,(4):81-87.
  • 2何新贵.模糊知识处理的理论与技术[M].北京:科学出版社,1996..
  • 3齐英杰 孔庆华 米佰林 等.液压设备故障诊断分析[M].北京:机械工业出版社,1988.314-332.
  • 4黄红钟.机械设计模糊化原理与应用[M].北京:科学出版社,1997..
  • 5冯德益 娄世博.模糊数学方法及其应用[M].北京:地震出版社,1983..
  • 6Chandler P, Pachter M, Mears M. Constrained linear regression for flight control system failure identification[ A]. Proc. American Control Conference[ C], June, 1993.
  • 7Rurken J J, et al. Reconfigurable Flight Control Designs with Application to X-33 Vehicle[ R]. AIAA-99-4143,1999.
  • 8Brinker J S, Wise K. Flight Testing of Reconfigurable Control of a Tailless Fighter Aircraft [ R ]. AIAA-2000-3941, 2000.
  • 9[日]水本雅晴.模糊数学及应用[M].北京科学出版社,1986
  • 10苏浩秦,邓建华.FDI飞机舵面损伤故障全局检测的非线性数学模型[J].航空计算技术,2002,32(1):17-20. 被引量:2

共引文献114

同被引文献121

引证文献9

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部