期刊文献+

有限元新型自然坐标方法研究进展 被引量:5

ADVANCES IN NEW NATURAL COORDINATE METHODS FOR FINITE ELEMENT METHOD
下载PDF
导出
摘要 网格畸变敏感问题一直是当前有限元法难以解决的问题,而新型自然坐标方法的诞生可以在一定程度上对解决这个难题有所帮助。该文介绍了有限元新型自然坐标方法研究的新近进展。包括第一类四边形面积坐标及其应用(单元构造,解析刚度矩阵的建立,以及在几何非线性问题中的应用等);第二类四边形面积坐标及其应用;六面体体积坐标及其应用。数值算例表明:无论网格如何扭曲畸变,这些基于新型自然坐标方法的有限元模型仍然保持高精度,对网格畸变不敏感。这显示了新型自然坐标方法是构造高性能单元模型的有效工具。 The sensitivity problem to mesh distortion is a challenging difficulty in the field of the fininet method. Recently, some new natural coordinate methods have been successfully established for developing robust finite element models. They provide possible ways to overcome the problem. This paper introduces some newest advances in the research on this area, including the quadrilateral area coordinate method of type I and its applications (construction of finite element model, establishment of analytical element stiffness matrix, and application in geometrically nonlinear problem); the quadrilateral area coordinate method of type II and its application; and the hexahedral volume coordinate method and its applications. Numerical examples show that element models formulated by these new natural coordinate systems are quite insensitive to various mesh distortions. It demonstrates that these new natural coordinate methods are powerful tools for constructing high-performance hexahedral finite element models.
出处 《工程力学》 EI CSCD 北大核心 2008年第A01期18-32,共15页 Engineering Mechanics
基金 国家自然科学基金项目(10502028) 高等学校全国优秀博士论文作者专项基金项目(200242) 教育部新世纪优秀人才支持计划项目(NCET-07-0477)
关键词 有限元 新型自然坐标 四边形面积坐标 六面体体积坐标 网格畸变 finite element new natural coordinate method quadrilateral area coordinate method hexahedral volume coordinate method mesh distortion
  • 相关文献

参考文献51

  • 1Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics [M]. 6th Edition. Oxford: Elsevier Butterworth-Heinemann, 2005.
  • 2Lee N S, Bathe K J. Effects of element distortion on the performance of isoparametric elements [J]. International Journal for Numerical Methods in Engineering, 1993, 36: 3553 -3576.
  • 3龙驭球,李聚轩,龙志飞,岑松.四边形单元面积坐标理论[J].工程力学,1997,14(3):1-11. 被引量:29
  • 4龙志飞,李聚轩,岑松,龙驭球.四边形单元面积坐标的微分和积分公式[J].工程力学,1997,14(3):12-20. 被引量:16
  • 5Long Y Q, Li J X, Long Z F, Cen S. Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 533- 545.
  • 6Long Z F, Li J X, Cen S, Long Y Q. Some basic formulae for Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(12): 841-852.
  • 7Long Y Q, Long Z F, Cen S. Method of area coordinate-from triangular to quadrilateral elements [J]. Advances in Structural Engineering, 2001, 4(1): 1 - 11.
  • 8Long Y Q, Cen S, Long Z F. Generalized conforming element (GCE) and quadrilateral area coordinate method (QACM) [C]// Yao Z H, Yao M W, Zhong W X. Proceedings of the Sixth World Congress on Computational Mechanics in conjunction with the Second Asian-Pacific Congress on Computational Mechanics, Beijing, China: Tsinghua University Press & Springer, 2004:462-467.
  • 9岑松,龙志飞,张春生.两个采用面积坐标的四边形八结点膜元[C].第七届全国结构工程学术会议论文集.北京:《工程力学》杂志社,1998,I:237-241.
  • 10龙志飞,陈晓明.采用面积坐标的广义协调四边形平面问题单元[C].第8届全国结构工程学术会议论文集.北京:《工程力学》杂志社,1999,I:227-232.

二级参考文献93

  • 1陈晓明,岑松,龙驭球,傅向荣.含两个分量的四边形单元面积坐标理论[J].工程力学,2007,24(z1):32-35. 被引量:7
  • 2金晶,吴新跃.有限元网格划分相关问题分析研究[J].计算机辅助工程,2005,14(2):75-78. 被引量:40
  • 3陈晓明,岑松,龙驭球.采用面积坐标和基于假设转角的薄板元[J].工程力学,2005,22(4):1-5. 被引量:8
  • 4钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1996,13(1):1-8. 被引量:48
  • 5陈万吉 唐立民.等参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 6陈万吉 唐立民 等.参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 7[1]Taig I C.Structural analysis by the matrix displacement method[R].Engl.Electric Aviation Report,1961:S017.
  • 8[2]Irons B M.Engineering application of numerical integration in stiffness method[J].J.AIAA,1966,14:2035~2037.
  • 9[3]Lee N S,Bathe K J.Effects of element distortion on the performance of isoparametric elements[J].International Journal for Numerical Methods in Engineering 1993,36:3553~3576.
  • 10[6]Chen X M,Cen S,Long Y Q,Yao Z H.Membrane elements insensitive to distortion using the quadrilateral area coordinate method[J].Computers & Structures,2004,82(1):35~54.

共引文献71

同被引文献81

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部