期刊文献+

单一与非单一鲁棒控制器的设计

Design of Single and Non-single Robust Controllers
下载PDF
导出
摘要 针对普通二次Lyapunov函数方法判定T-S模糊系统稳定性存在的保守性和难度,利用T-S系统的模糊前提规则和隶属度函数分别构造分段二次Lyapunov函数和模糊Lyapunov函数,且通过将模糊Lyapunov函数引入到分段二次Lyapunov函数所得到的分段模糊区域中定义了分段模糊Lyapunov函数;研究一类T-S模糊系统的鲁棒控制问题,以线性矩阵不等式的形式给出了单一与非单一鲁棒控制器的参数化设计方法。仿真结果表明,非线性系统在非单一鲁棒控制器作用下能够获得比单一鲁棒控制器更好的控制性能。 To the conservative and difficulty in checking the stability of T-S fuzzy system with the general quadratic Lyapunov function(CQLF)approach,piecewise quadratic Lyapunov function(PQLF) and fuzzy Lyapunov function(FLF) are defined respectively by using fuzzy premise rules and membership functions.The piecewise fuzzy Lyapunov function(PFLF) is defined by bringing FLF into the piecewise fuzzy regions educed by PQLF.The problem of robust control of a typical class of T-S fuzzy systems is researched,and the parametric design of single and non-single robust controllers are given in the form of lniear martix inequalities(LMI).The simulation results show that nonlinear systems under non-single robust controllers have better performance than single robust controller.
出处 《控制工程》 CSCD 2008年第4期405-409,428,共6页 Control Engineering of China
基金 国家自然科学基金资助项目(60774030) 江南大学创新团队发展计划基金资助项目(2007)
关键词 模糊系统 并行分配补偿 线性矩阵不等式 鲁棒控制器 fuzzy system parallel distributing compensation(PDC) LMI robust controller
  • 相关文献

参考文献3

二级参考文献18

  • 1JianjiangYU TianpingZHANG HaijunGU.Robust adaptive fuzzy control for a class of perturbed pure-feedback nonlinear systems[J].控制理论与应用(英文版),2004,2(2):175-178. 被引量:4
  • 2修智宏,任光.T-S模糊控制系统的稳定性分析及系统化设计[J].自动化学报,2004,30(5):731-741. 被引量:34
  • 3Tanaka K,Sugeno M.Stability Analysis and Design of Fuzzy Control System[J].Fuzzy Sets and Systems (S0165-0114),1992,45(2):135-156.
  • 4Wang H O,Tanaka K,Griffin M F.An Approach to Fuzzy Control of Nonlinear Systems:Stability and Design Issues[J].IEEE Trans.Fuzzy Systems (S1063-6706),1996,4(1):14-23.
  • 5Daafouz J,Riedinger P,Iung C.Stability Analysis and Control Synthesis for Switched Systems:A Switched Lyapunov Function Approach[J].IEEE Trans.Automatic Control (S0018-9286),2002,47(11):1883-1887.
  • 6Tanaka K,Hori T,Wang H O.A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems[J].IEEE Trans.Fuzzy Systems (S1063-6706),2003,11(4):582-589.
  • 7Henon M.A Two Dimensional Map with a Strange Attractor[J].Communications in Mathematical Physics (S0010-3616),1976,50(1):69-77.
  • 8A. V. Savkin,A. S. Matveev.Cyclic linear differential automata: a simple class of hybrid dynamical systems[].Automatica.2000
  • 9D. Cheng,L. Guo,J. Huang.On quadratic Lyapunov functions[].IEEE Transactions on Automatic Control.2003
  • 10S. Pettersson,B. Lennartson.Stability and robustness for hybridsystems[].Proceedings of the th Conference Decsion and Control.1996

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部