期刊文献+

Existence, Uniqueness and Blow-up of Generalized Solutions to General Nonlinear Filtration Equations

Existence, Uniqueness and Blow-up of Generalized Solutions to General Nonlinear Filtration Equations
下载PDF
导出
摘要 In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, uniqueness and blow-up in finite time of these solutions under some structure conditions.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期301-308,共8页 数学季刊(英文版)
基金 Foundation item: Supported by National Science Foundation of China(10572156) Supported by Natural Science Foundation of Henan Province(0211010900) Supported by National Science Foundation of Department of Education of Henan Province(200510465001)
关键词 nonlinear filtration equation Cauchy problem generalized solution EXISTENCE UNIQUENESS BLOW-UP 一般非线性渗流方程 广义解 唯一性 Blow—up
  • 相关文献

参考文献7

  • 1CHEN Ya-zhe. Existence and uniqueness of weak solutions for uniformly degenerate quasilinear parabolic equations[J]. Chin Ann Math, 1985, 6B: 131-146.
  • 2CHEN Ya-zhe. On finite diffusing speed for uniformly degenerate quasilinear parabolic equations[J]. Chin Ann Math, 1986, 7B: 318-329.
  • 3OLEINIK O A, KALASHNIKOV A S, ZHOU Yu-lin. The Cauchy problem and boundary problems for equations of the type of nonlinear filtration[J]. Izv Akad Nauk Sssr Ser Math, 1958, 22: 667-704.
  • 4DIBENEDETTO E. Continuity of weak solution to a general porous medium equation[J]. Indiana Univ Math J, 1983, 32: 83-118.
  • 5LADYZENSKAJA O A, SOLIONIKOV V A, URAL'CEVA N N. Linear and Quasilinear Equation of Paralodic Type[M]. Transl Mth Monographs, 23, AMS Providence R L, 1968.
  • 6AQUIRRE J, ESCOBEDO M. On the blow-up of solutions of a convective reaction diffusion equation[J]. Proc Roval Soc Edinburgh, 1993, 123A: 433-460.
  • 7IMAI T, MACHIZUKI K. On blow-up of solutions for quasilinear degenerate parabolic equations[J]. Publ RIMS Kyoto Univ, 1991, 27: 695-709.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部