摘要
设{εt;t∈N*}是一严平稳零均值正相协随机变量序列,0〈Eε1^2〈∞,及σ^2=Eε1^2+2∑j=2^∞Eε1εj,0〈σ^2〈∞,{aj;j∈N}是一实数序列,并且∑j=0^∞|aj|〈∞,定义移动平均过程Xt=∑j=0^∞ajεt-j,t≥1,令Sn=∑t=1^nXt,n≥1,假设对某个δ'1〉0有E|E1|^2+δ'〈∞,对某个ρ〉0有u(n)=0(n^-ρ),给出了∑n=1^∞ n^r/(p-2) P{|Sn|≥εn^1/p},∑n=1^∞ 1/n P{|Sn|≥εn^1/p}当ε→0时的精确渐近性。
Let {εt;t∈N*} be a strictly stationary sequence of associated random variables with mean zeros,let 0〈Eε1^2〈∞ and σ^2=Eε1^2+2∑j=2^∞Eε1εj with 0〈σ^2〈∞,{aj;j∈N} is a sequence of real numbers ,.satisfying ∑j=0^∞|aj|〈∞ Define a moving average process Xt=∑j=0^∞ajεt-j,t≥1,and Sn=∑t=1^nXt,n≥1. Assume that E|E1|^2+δ'〈∞ for some δ'1〉0 and u(n)=0(n^-ρ) for some ρ〉0. The precise asymptotics for ∑n=1^∞ n^r/(p-2) P{|Sn|≥εn^1/p},∑n=1^∞ 1/n P{|Sn|≥εn^1/p} as ε→0 are established.
出处
《北华大学学报(自然科学版)》
CAS
2008年第4期289-293,共5页
Journal of Beihua University(Natural Science)
基金
国家自然科学基金资助项目(10571073)
关键词
正相协序列
移动平均过程
精确渐近性
Associated sequence
Moving average process
Precise asymptotics