期刊文献+

求解偏微分方程的格点法 被引量:1

Lattice Method for Solving Partial Differential Equations
下载PDF
导出
摘要 格点法是在计算流体力学中首先发展起来的数值模拟新方法。其根本思想是对问题重新建模,建立直接模拟流体运动的离散格点模型。本文以一阶拟线性双典型方程及Kdv方程为例,推广这种求解一般偏微分方程的方法。它是运用多尺度分析方法,构造出格点模型的演化方程的局部平衡分布函数。数值试验表明,该方法程序实现简单,求解速度快。 ,The lattice method is a new numerical simulation method which is firstly developed from computation fluid dynamics. Its essential idea is to rebuild its model for mathematical physical problems, and establish the disperse lattice model for simulating fluid movement directly. This paper takes the first order simulation linear double typical equation and Kdv equation as examples, and tries to spread this method for solving general partial differential equation. The local equilibrium distribution function of lattice model evolution equation is constructed by use of multi scale analysis.The numerical testing shows that the method has simple computer program and satisfactory result with fast solution speed.
出处 《华东地质学院学报》 1997年第4期389-395,共7页 Journal of East China Geological Institute
基金 国家自然科学基金
关键词 格点法 多尺度分析 偏微分方程 流体力学 ,lattice method multi scale analysis evolution equation local equilibrium function
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部