期刊文献+

X射线底片焊缝缺陷的支持向量机识别方法 被引量:10

Detection of Defects in Welding Line from X-Ray Film Using SVM
下载PDF
导出
摘要 准确识别X射线底片焊缝缺陷类别,可改进焊接工艺、提高焊接质量.该文在分析和比较几种焊缝缺陷识别模式的基础上,提出了基于支持向量机(SVM)的X射线底片焊缝缺陷识别方法.该方法首先对X射线底片进行数字化处理和缺陷特征提取,然后针对X射线底片焊缝缺陷样本特点,建立SVM"一对一"聚类结构并对样本进行识别.实验结果表明,该模型具有识别精度高、速度快、容易实现等优点,适合对X射线底片焊缝缺陷识别. It is important to detect defects of welding lines on an X-ray film for improving welding techniques and the product quality. This paper proposes a detection method based on support vector machine based on analysis and comparison with several other methods. In the proposed method, the film is first converted into digital format, and characteristics of the defect are extracted. A “one against one” SVM clustering structure is constructed according to the characteristics, and recognition is made. Experiments show high accuracy and processing speed, and easy implementation of the method. The method is suitable for detection and recognition of defects of welding lines from X-ray films.
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第4期418-424,共7页 Journal of Applied Sciences
基金 国家自然科学基金资助项目(No.70672096)
关键词 X射线底片 焊缝缺陷 支持向量机 识别 X-ray film, defect of welding line, support vector machine, recognition
  • 相关文献

参考文献12

  • 1中国机械工程协会.射线检测[M].北京:机械工业出版社,1997,1-177.
  • 2CHO H S, CHUN D W. A microprocessor based electrode movement controller for spot weld quality assurance [ J ]. IEEE Transaction on Industrial Electronics, 1985,32(3) : 234 - 238.
  • 3MASNORI T, NOBORU S. Evalution of function of spot weld joint using ultrasonic inspection ( nondestructive evaluation on tension shearing strength with neural network) [ J ].Mechanics and Material Engineer, 1996,39 ( 10 ) : 626 - 632.
  • 4BROWN J D, RODD M G, WILLAMS N T. Application of artificial intelligence techniques to resistance spot welds [ J]. Ironmaking and Steelmaking, 1995,25 (3) : 199 - 204.
  • 5MESSKER R W, Jou M, LIC J. An intelligent control system for resistance spot welding using a neural network and fuzzy logic [ C]// Conference Record of the 1995 IEEE. San Francisco, 1995 : 1775 - 1763.
  • 6张鹏贤,陈剑虹,杜文江.基于焊点表面图像处理的点焊质量监测[J].焊接学报,2006,27(12):57-60. 被引量:12
  • 7赵欣,张延松,陈关龙,张小云.基于神经网络优化的车身镀锌板点焊性能预测[J].焊接学报,2006,27(12):77-80. 被引量:5
  • 8张忠典,李冬青,赵洪运,范伟光.建立点焊质量神经网络监测模型时作用函数的选取[J].焊接学报,2002,23(3):49-62. 被引量:7
  • 9METAXIOTiS K, KAGIANNAS A, ASKOUNIS A, PSARRAS J. Artificial intelligence in short term electric load forecasting :a state-of-the-art survey for the research [ J ].Energy conversion and Management, 2003,44:1525 - 1534.
  • 10VAPNIK V N. The nature of statistical learning theory [ M ]. NewYork : Spring-Verlag, 1999.

二级参考文献22

共引文献46

同被引文献97

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部