期刊文献+

群体智能优化算法 被引量:18

Swarm Intelligence Optimization Algorithm
下载PDF
导出
摘要 群体智能优化算法利用群体的优势,在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。介绍了两种群体智能算法模型:蚁群算法模型和粒子群算法模型,研究了两种算法的原理机制、基本模型、流程实现、改进思想和方法;通过仿真把蚁群算法与其他启发式算法的计算结果作对比,验证了蚁群算法具有很强的发现较好解的能力,不容易陷入局部最优;微粒群算法保留了基于种群的、并行的全局搜索策略,采用简单的速度-位移模型操作,在实际应用中取得了较高的成功率。 By the use of groups'advantages, in the absence of centralized control and without providing the overall model situation, swarm intelligence optimum algorithm provides the foundation on finding complex distributed solutions to the problem. Introduces the two swarm intelligence algorithm models:ant colony algorithm model and the particle swarm algorithm model, researches on principle mechanism, the basic model, process realization and improved ideas and methods;and by comparing the calculation results of the ant colony algorithm and other heuristic algorithm through the simulation, proved that the ant colony algorithm has a strong ability to find better solutions, and is not easy for a local optimum. The algorithm which based on the population of reservations, parallel global search strategy, using simplY speed-displacement model operation, has been made in a higher success rate in practical application.
出处 《计算机技术与发展》 2008年第8期114-117,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60273043) 安徽省自然科学基金资助项目(050420204)
关键词 群体智能 蚁群算法 粒子群算法 启发式算法 swarm intelligence ant colony optimization algorithm particle swarm optimization heuristic algorithm
  • 相关文献

参考文献9

  • 1Dorigo M,GambardeUa L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem [J ].IEER Transactions on Evolutionary Computations, 1997, 1(1):53-66.
  • 2Gambardella L M, Dorigo M. Solving Symmetric and Asymmetric TSPs by Colonies[C]//In proceedings of the IEEE Intemational Conference on Evolutionary Computation (ICEC '96). [s. l. ] : IEEE Press, 1996:622 - 627.
  • 3Kennedy J,Eberhart R C. Partide swarm optimization[ C]// In:Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ : [ s. n. ], 1995 : 1942 - 1948.
  • 4Dorigo M, Maniezzo V,Colomi A. The ant system:optimization by a colony of ccoperating agents[ J ]. IEEE Transactions on Systems,Man, and Cybernetics,Part B, 1996,26(1):29- 41.
  • 5Bullnheimer B, Hartl R F, Strauss C. A New Rank - based Version of the ant system:A Computational Study[ R]. Vienna: Institute of Management Science, University of Vienna, 1997.
  • 6Sturzle T, Hoos H H. MAX- MIN Ant System[J]. Future Generation Computer Systems, 2000,16 (8) : 889 - 914.
  • 7Colomi A, Dorigo M,Maniezzo V,et al.Ant system for jobshop scheduling[J]. Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL), 1994, 34:39 - 53.
  • 8Costa D, Hertz A. Anta can color graphs[J] .Journal of Operational Research Society, 1997,48:295 - 305.
  • 9Durbin R,Willshaw D. An Analogue Approach to the Travelling Salesman Problem Using an Elastic Net Method[ J ]. Nature, 1987 (326) : 689 - 691.

同被引文献164

引证文献18

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部