摘要
泄漏电流信号中包含了污秽绝缘子闪络发展过程的丰富信息,但是庞大的数据量使得传送和处理系统速度降低。为了尽量提供完整的原始泄漏电流数据,从泄漏电流的非线性特性和后期的剧烈震荡性出发,应用分形理论的迭代函数法对原始泄漏电流数据进行了压缩;根据迭代函数参数,应用分形插值和拼贴定理对压缩后的泄漏电流数据进行恢复。实验结果表明,分形理论在具有分形特性的泄漏电流数据压缩和恢复中具有优势。应用分形方法压缩数据具有很高的压缩比和很小的重构误差,使得泄漏电流在传输过程中数据量大大减小,提高了整个系统的速度和效率。
The abundant information of contaminated insulators flashover processing is included in the leakage current (LC), but huge data decrease the speed of transmission and manage system. According to the non-linear and acute shock characteristics of leakage current,iterative function system(IFS) in fractal theory is used to compress original LC, and the collage theorem with right compressing arithmetic operators is used to reconstruct the original LC in order to keep the original LC data complete, subsection IFS is used to smooth the curve to get better precise. The experimental results show that the fractal theory is provided with unique advantage, such as higher compression ratio, lower reconstruction error, in LC compression and recovery, with which the speed and efficiency of the sysgem is improved and the quantity of LC data is decreased greatly during the transmission.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2008年第7期1395-1400,共6页
High Voltage Engineering
基金
国家自然科学基金(902110006)~~
关键词
分形
迭代函数系
数据压缩
泄漏电流
压缩因子
数据恢复
fractal
IFS ( Iterated Function System)
data compression
leakage current
compression coefficient
data recovery