期刊文献+

脑-机接口研究中想象动作电位的特征提取与分类算法 被引量:13

Feature extraction and classification algorithm for motor imaginary potential
下载PDF
导出
摘要 人在想象但未实施肢体或其他身体部位动作时,与该动作相关的大脑运动皮层区域会发生与该动作实施时相似的电生理响应,称为想象动作电位。想象动作电位的提取与分类是脑-机接口(BCI)技术的关键和难点。本文分别介绍了想象动作电位的时频分析、复杂度分析、相位耦合测量、多通道线性描述符、多维统计分析等特征提取方法和线性判别分析、人工神经网络、支持向量机等分类算法,以供BCI系统设计与研究时参考。 Specific electrophysiological response will occur in the related region of brain motor cortex when human pursues limbs or other body parts in imagination, which is similar to the phenomenon caused by real motor of the corresponding body action. Extracting and classifying the motor imaginary potential are the key and difficult points in brain-computer interface. In this article, some feature extraction methods such as time-frequency analysis, complexity analysis, phase coupling measurement, multi-dimensional statistical analysis and etc. , and some classification means such as linear discrimination analysis, artificial neural network, support vector machine and etc, are introduced as the references in design and study of brain-computer interface system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第8期1772-1778,共7页 Chinese Journal of Scientific Instrument
基金 "十一五"国家高技术研究发展计划(863计划 2007AA04Z236) 国家自然科学基金(60501005) 天津市科技支撑计划重点项目(07ZCKFSF01300)资助
关键词 脑-机接VI 想象动作电位 特征提取 分类算法 brain-computer interface (BCI) motor imaginary potential feature extraction classification
  • 相关文献

参考文献31

  • 1WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology:A review of the first international meeting[ J]. IEEE Trans Rehabil Eng, 2000,8(2) :164-173.
  • 2WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysial, 2002,113(6) :767-791.
  • 3VAUGHAN T M, WOLPAW J R, DONCHIN E, et al, EEG-based communication : prospects and problems [ J ] . IEEE Trans. Rehabil Eng. , 1996,4(4) :425-430.
  • 4程明,高上凯,张琳.基于脑电信号的脑—计算机接口[J].北京生物医学工程,2000,19(2):113-118. 被引量:41
  • 5万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学(生物医学工程分册),2005,28(1):4-9. 被引量:22
  • 6MCFARLAND D J, LEFKOWICZ A T, WOLPAW J R, et al. Design and operation of an EEG-based brain-computer interface (BCI) with digital signal processing technology[ J]. Behav Res Methods Instrm Comput, 1997,29 (3) :337-345.
  • 7PFURACHELLER G, NEUPER C, SCHLOGI A, et al. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters [J]. IEEE Trans. Rehabil Eng., 1998,6(3) :316-325.
  • 8DIMITER P, ENRICO M, JAN H. Functional electric stimulation for sensory and motor functions:Progress and problems [ M ]. Biomedical Reviews, 2003,14 : 23-50.
  • 9LIBERSON W T, HOLMQUEST H I, SCOTT D. Functional electrotherapy in stimulation of the personal nerve synchronized with the swing phase of the gait of hemiplegic patients[J]. Arch Phys Med Rehabil, 1961,42:101- 107.
  • 10OBHI S S. Bimanual coordination:an unbalanced field of research[J]. Motor Control, 2004,8(2) :111-120.

二级参考文献59

  • 1[1] Pfurtscheller G, et al. Brain-computer interface-a new communication device for handicapped persons. J Microcomput Appl,1993,16:293~299
  • 2[2] EEG-based communication.http://www.ee.ic.ac.uk/research/neural/bci/review.html
  • 3[3] Vaughan T M, et al. EEG-based communication:prospects and problems. IEEE Trans Rehabil Eng,1996,4(4):425~430
  • 4[4] Sutter E E. The brain response interface:communication through visually-induced electrical brain response. J Microcomput Appl,1992,15:31~45
  • 5[5] Farwell L A and Donchin E. Talking off the top of your head:toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol,1988,70:510~523
  • 6[6] Pfurtscheller G, et al. Prediction of the side of hand movements from single trial multichannel EEG data using neural networks. Electroenceph Clin Neurophysiol,1992,82:313~315
  • 7[7] Peltoranta M and Pfurtscheller G. Neural network based classification of non-averaged event-related EEG responses. Med Biol Eng Comput, 1994,32:189~196
  • 8[8] Pfurtscheller G, et al. Differentiation between finger, toe and tongue movement in man based of 40Hz EEG. Electroenceph.Clin Neurophysiol,1994,90:456~460
  • 9[9] Flotzinger D, et al. Classification of non-averaged EEG data by learning vector quantisation and the influence of signal preprocessing. Med Biol Eng Comput,1994,32:571~576
  • 10[10] Kalcher J, et al. Graz brain-computer interface Ⅱ:towards communication between humans and computers based on online classification of three different EEG patterns. Med Biol Eng Comput,1996,34:382~388

共引文献83

同被引文献160

引证文献13

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部