期刊文献+

亏格为2的超椭圆曲线上的二分算法及其优化 被引量:1

A HALVING ALGORITHM FOR HYPERELLIPTIC CURVE OF GENUS TWO AND ITS OPTIMIZATION
下载PDF
导出
摘要 相对于椭圆曲线密码体制而言,超椭圆曲线密码体制(HECC)具有许多优势,如更短的操作数,更小的带宽,在同等安全条件下所用的基域小,在同样的定义域上亏格越大、曲线越多,等等。HECC中最重要且最耗时的运算是标量乘,二分法是一种比常用的倍点法更为有效的算法。对二分法作了进一步的优化,通过选择合适的曲线参数,减少二分法中域操作运算量,降低其运算复杂度,从而有效地提高了实现效率。 Compared with ECC, HECC has more advantages, such as shorter operand, smaller bandwidth, smaller field under the same secu- rity,larger genus and more curves on the same definition area. In hyperelliptic curve cryptosystem, the most important and costliest operation is the scalar multiplication, and the halving algorithm is more effective than the doubling algorithm. The halving algorithm is optimized. The ap- propriate curve parameters are selected, and the field operations are simplified. The operation complexity is reduced, and the efficiency of the algorithm is improved.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第7期94-95,111,共3页 Computer Applications and Software
基金 江苏省研究生创新计划项目(2005055)资助
关键词 超椭圆曲线 亏格 二分算法 Hyperelliptic curve Genus Halving algorithm
  • 相关文献

参考文献7

  • 1Koblitz N. Hyperelliptic Cryptosystem[J]. Journal of Crvptology 1989 1(3) :139 -150.
  • 2Miller V S, Use of elliptic curve in cryptography[ A]. In CRYPTO' 85 LNCS. 218, Spring-Verlag, 1986,417 -426.
  • 3张方国,王育民.超椭圆曲线密码体制的研究与进展[J].电子学报,2002,30(1):126-131. 被引量:17
  • 4Cantor D. Computing in the Jacobian of a Hyperelliptic Curve. Mathematics of Computation, 1987,48( 177 ) :95 - 101.
  • 5Gaudry P,harley R. Counting Points on Hyperelliptic Curves over Finite Fields, ANTS 2000, LNCS 1838:313 - 332.
  • 6Florian Hess, Gadiel Seroussi, Nigel P. Smart, Two Topics in Hyperelliptic Crytography. S. Vaudenay and A. Youssef( Eds. ) : SAC 2001 LNCS 2259 : 181 - 189.
  • 7huru Kitamura, Masanobu Katagi,Tsuyoshi Takagi. A Complete Divisor Class Havling Algorithm for Hyperelliptic Curve Cryptosystems of Genus Two. C. Boyd and J. M. Gonzalez Nieto ( Eds. ) : ACISP 2005, LNCS 3574 : 146 - 157.

二级参考文献36

  • 1[1]N Koblitz. Elliptic curve cryptosystems [J]. Math. Comp. 1987, 48(177):203-209.
  • 2[2]V S Miller. Use of elliptic curve in cryptography [ A].In GRYPTO'85( Santa Barbara, Calif., 1985 ), LNCS. 218 [ C ], Spring- Verlag. 1986:417 - 426.
  • 3[3]N Koblitz. Hyperelliptic cryptography [ J ]. J. of Crypto., 1989, 1 (3):139- 150.
  • 4[4]D G Cantor. Computing in the jacobian of a hyperelliptic curve [J].Math. Comp., 1987,48:95 - 101.
  • 5[5]N Koblitz. Algebraic Aspects of Cryptography [ M]. Algorithms and Comutation in Math.3,Springer-Verlag 1998.
  • 6[6]Mumford D. Tata Lectures on Theta Ⅱ [ M ]. Birkhauser-Verlag,Boston. 1984.
  • 7[7]Paulus Ruck, H -G. Real and imaginary quadratic representations of hvperelliptic fmction fields logarithms [ J ]. Math. Comp., 1999, 68:1233 - 1241.
  • 8[8]A Stein. Sharp upper bound for arithmetics in hyperelliptic function rields [ R ]. Techn. Report CORR # 99-23, University of Waterloo (2000) ,68 pages. http://www. cacr. math. uwaterloo. ca.
  • 9[9]Andreas Enge. The extended euclidian algorithm on polynomials, and the computational efficiency of hyperelliptic cryptosystems. http://www. math. umi-augsburg. de/~ enge/Publikationen. html.
  • 10[10]Robin Hartshome. Algebraic Geometry [ M]. GTM 52,Springer-Verlag,New York 1977.

共引文献16

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部