期刊文献+

独立分量分析及其在图像处理中的应用现状 被引量:10

Independent Component Analysis and its applications in image processing
下载PDF
导出
摘要 独立分量分析是一种基于高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,近年来作为信号处理和图像处理领域的强有力的分析处理工具得到广泛的关注和研究。在介绍了独立分量分析的基本概念和各种实现算法及其性能的基础上,综述了独立分量分析在图像处理上的应用,最后结合作者的研究探索,总结了独立分量分析的研究新进展和发展趋势。 Independent Component Analysis(ICA) is a signal analysis method based on signal's high order cumulants,it can find out the latent independent components in data.With it's widely applications in signal and image processing,many researches have focus on ICA recently.In this paper,the authors briefly review the theory of independent component analysis and its applications in image processing.After a general introduction to the definitions and models of ICA, the authors discuss in more detail the contrast functions and optimization algorithms of ICA.Then review various applications of ICA in image processing.In the later part of this paper,the future works and the research directions of ICA are reviewed combining to the works of the author.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第23期172-177,共6页 Computer Engineering and Applications
基金 国家部委科技重点实验室基金资助项目
关键词 独立分量分析 图像处理 盲分离 Independent Component Analysis (ICA) image processing blind source separation
  • 相关文献

参考文献59

  • 1Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10 (3) :626-634.
  • 2Common P.Independent component analysis-a new concept? [J]. Signal Processing, 1994,36(3) :287-314.
  • 3Hyvarinen A.Survey on independent component analysis[J].Neural Computing Surveys, 1999,2(4) :94-128.
  • 4Hyvarinen A,Karhunen J,Oja E.Independent component analysis[M]. New York:John Wiley,2001.
  • 5Roberts S J,Everson R.Independent component analysis:principles and practice[M].UK:Cambridge University Press,2001.
  • 6Cichocki A,Amari S I.Adaptive blind signal and image processing-learning algorithms and applications[M].[S.l.]:Wiley,2002.
  • 7高隽.智能信息处理方法导论[M].北京:机械工业出版社,2003.
  • 8斯华龄,张立明.智能视觉图像处理-多通道图像的无监督学习方法及其他方法[M].上海:上海科技教育出版社,2002.
  • 9Hyvarinen A.Independent component analysis in the presence of Gausian noise maximizing joint lifelihood[J].Neuralcomputing, 1998,22( 1/3 ) : 49-67.
  • 10Nadal J P,Parga N.Non-linear neurons in the low noise limit:a factorial code maximize information transfer[J].Network, 1994,5(4): 49-67.

二级参考文献164

  • 1尚丽,郑春厚.基于稀疏编码的自然图像特征提取及去噪[J].系统仿真学报,2005,17(7):1782-1784. 被引量:12
  • 2楚恒,李杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J].光电工程,2005,32(8):59-63. 被引量:28
  • 3吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205.
  • 4Hyvarinen A.Fast and robust fixed—point algorithms for independent component analysis [J].IEEE Transactions on Neural Networks,1999,10(3):626~634.
  • 5Hyvarinen Aapo.One—unit contrast functions for independent component analysis:A statistical analysis[C].In Neural Networks for Signal Processing Amelia Island,Florida,1997,Ⅶ:388—397.
  • 6Lades H, Sejnowski T. Independent component rep-resentations for face recognition [C]. Proceedings ofthe SPIE. Conference on Human Vision and Electronic Imaging Ⅲ, 1998, 3299: 528-539.
  • 7Wang Mingxiang, Mo Yulong, Ma Junli. Applied method of license plate binarization based on histogram analysis [C]. Proceedings of SPIR, Image Matching and Analysis, 2001, 4552 : 213-218.
  • 8Van Schyndel R G, Tirkel A Z, Osborne C F. Towards a robust digital watermark[A]. ACCV'95 Conference[C]. 1995, 2: 504-508.
  • 9Cox I J, Kilian J, Leighton T, Shamoon T. Secure spread spectrum watermarking for multimedia[J]. IEEE Trans. on Image Processing, 1997-12,6(12): 1673-1687.
  • 10Podilchuk C I. Image-adaptive watermarking using visual models[J]. IEEE Journal on Selected Areas in Com., 1998, 16(4): 525-539.

共引文献163

同被引文献74

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部